Skip to main content
Log in

Sonic agglomeration of aerosol particles

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Carbon black was used to study the behavior of an aerosol in a sound field. The primary objective of this work was to determine the feasibility of using sonic agglomeration at low sound pressure levels (100 to 120 dB) to coagulate particles. If coagulation could be achieved, the larger particles could be collected in a subsequent removal device. Prediction of optimum conditions for maximum agglomeration was also an integral part of this analysis.

Separate experiments to determine the effect of varying sound pressure level, frequency, particle mass loading in an air stream, and exposure time were conducted. Increasing the mass loading, sound pressure level and exposure time resulted in increased agglomerate size. For all tests using carbon black, optimum growth occurred at 3 kHz. It is noted that the mean particle diameter in a carbon black aerosol can be increased an order of magnitude using sonic agglomeration at low sound pressure levels suggesting that this mechanism can be used effectively in industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d p :

diameter of the particle, μm

exp:

base for Naperian logarithms = 2.718282

f :

sound frequency, Hz

K a :

acoustic coagulation coefficient of the aerosol, cm2 × cm−1

K Br :

coagulation constant

n 0 :

initial particle concentration, particles cm−3

n :

number concentration of the particles in the aerosol, particles cm−3

t :

time, seconds

X g :

amplitude of the gas, m

X p :

amplitude of the particles, m

ρp :

density of the particle, g m−3

μg :

viscosity of the gas, g m−1 s−1

π:

pi=3.14159265

Bibliography

  1. Andrade, E. N. da C.: 1936, Proc. Roy. Soc. 134, 1111.

    Google Scholar 

  2. Black, A. P.: 1960, J. Amer. Water Works Assoc. 492.

  3. Boucher, R. M. G.: 1960, Ultrasonic News 11.

  4. Brandt, O., Freund, H. and Hiedemann, E.: 1936, Trans. Faraday Soc. 1101.

  5. Danser, H. W.: 1950, Chemical Engineering 158.

  6. Danser, H. W. and Neumann, E. P.: 1949, Industrial Engineering Chem. 41, 2439.

    Google Scholar 

  7. Davies, C. N.: 1962, Nature 195, 768.

    Google Scholar 

  8. Fuchs, N. A.: 1934, Z. Phys. Chem. A171, 199.

    Google Scholar 

  9. Fuchs, N. A.: 1964, The Mechanics of Aerosols, Pergamon Press, New York.

    Google Scholar 

  10. Green, J. L. and Lane, W. R.: 1964, Particulate Clouds: Dusts, Smokes, Mists, General and Industrial Chemistry, Second Edition.

  11. Gucker, Jr., F. T.: 1953, ‘The Coagulation of Aerosols’, University of Indiana.

  12. Gucker, Jr., F. T. and Doyle, G. J.: 1956, J. Phys. Chem. 989.

  13. Kidoo, G.: 1951, Chemical Engineering 58, 154.

    Google Scholar 

  14. Knepper, W. A.: 1962, Agglomeration, Interscience Publishers, Inc., New York.

    Google Scholar 

  15. Mednikov, E.P.: 1965, ‘Acoustic Coagulation and Precipitation of Aerosols’, Translated from Russian, Consultants Bureau.

  16. Neumann, E. P. and Norton, J. L.: 1951, Chemical Engineering Symposium Series No. 1, 47, 4.

    Google Scholar 

  17. Neumann, E. P., Soderberg, C. R. and Fowle, A. R.: 1950, ‘Design, Application, Performance, and Limitations of Sonic Type Flocculators and Collectors’, International Committee on Air Pollution, Washington, D.C., Air Pollution Proc. — U.S. Technical Conference, 388.

    Google Scholar 

  18. Nord, M.: 1950, Chemical Engineering 57, 116.

    Google Scholar 

  19. Patterson, H. S., Whytlaw-Gray, R. and Cawood, W.: 1929, Proc. Roy. Soc. (London), 124, 502.

    Google Scholar 

  20. Smoluchowski, M. V.: 1918, Z. Physik Chem. 195, 129.

    Google Scholar 

  21. St. Clair, H. W.: 1938, ‘Sonic Flocculator as a Fume Settler: Theory and Practice’, U.S. Bureau of Mines R.I. 3400.

  22. St. Clair, H. W., Spendlove, M. J. and Potter, E. V.: 1948, ‘Flocculation of Aerosols by Intense High Frequency Sound’, U.S. Bureau of Mines R.I. 4218.

  23. St. Clair, H. W.: 1949, Industrial Engineering Chem. 2434.

  24. St. Clair, H. W.: 1952, Air Pollution.

  25. Stokes, C. A.: 1950, Chemical Engineering Process 46, 423.

    Google Scholar 

  26. Varlamov, M. L., Kricheoskaya, E. L., Manakin, G. A., Mazakova, L. M. and Gospodinov, A. N.: 1960, ‘Acoustic Coagulation of Sulfuric Acid Mist’, Translated from Zhurnal Prikladnol Khimic 33, 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volk, M., Moroz, W.J. Sonic agglomeration of aerosol particles. Water Air Soil Pollut 5, 319–334 (1976). https://doi.org/10.1007/BF00158347

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00158347

Keywords

Navigation