Skip to main content
Log in

Magnetoacoustic-gravity surface waves

II. Uniform Magnetic Field

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The linearized theory for the parallel propagation of magnetoacoustic-gravity surface waves is developed and a dispersion relation obtained for the case of an isothermal interface of a uniform horizontal magnetic field residing above a field-free medium. The transcendental dispersion relation is solved numerically for a range of parameters and the resulting dispersion curves and corresponding eigenfunctions plotted. As in the case of a uniform Alfvén speed (Paper I), the existence of the fast and slow magnetoacoustic-gravity surface modes and the f-mode (modified by the presence of the uniform magnetic field) is determined by the relative temperatures of the two media either side of the interface. If the lower field-free region is cooler than the upper magnetic atmosphere only the slow magnetoacoustic-gravity surface mode may propagate. In addition to these three surface modes we find higher harmonic-type trapped modes. The existence of these modes also depends on the temperatures either side of the interface. They propagate only when both the field-free region is warmer than the magnetic field region and the Alfvén speed is greater than the corresponding sound speed in the magnetic atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. A.: 1965, Handbook of Mathematical Functions, Dover Publ., New York.

    Google Scholar 

  • Adam, J. A.: 1975, Ph.D. Thesis, University of London.

  • Adam, J. A.: 1977, Solar Phys. 52, 293.

    Google Scholar 

  • Evans, D. J. and Roberts, B.: 1990, Astrophys. J. 356, 704.

    Google Scholar 

  • Goedbloed, J. P.: 1971, Physica 53, 412.

    Google Scholar 

  • González, A. G. and Gratton, J.: 1991, Solar Phys. 134, 211.

    Google Scholar 

  • Kumar, P., Duvall, T. L., Jr., Harvey, J. W., Jefferies, S. M., Pomerantz, M. A., and Thompson, M. J.: 1991, Lecture Notes in Physics 367, 87.

    Google Scholar 

  • Lamb, H.: 1932, Hydrodynamics, Cambridge University Press, Cambridge, Chapter X.

    Google Scholar 

  • Miles, A. J. and Roberts, B.: 1989, Solar Phys. 119, 257.

    Google Scholar 

  • Miles, A. J. and Roberts, B.: 1991, in M. Dubois, F. Bely-Dubau, and D. Gresillon (eds.), Plasma Phenomena in the Solar Atmosphere, Cargèse, p. 77.

  • Miles, A. J. and Roberts, B.: 1992, Solar Phys. 141, 205 (Paper I).

    Google Scholar 

  • Nye, A. H. and Thomas, J. H.: 1976a, Astrophys. J. 204, 573.

    Google Scholar 

  • Nye, A. H. and Thomas, J. H.: 1976b, Astrophys. J. 204, 582.

    Google Scholar 

  • Roberts, B.: 1981, Solar Phys. 69, 27.

    Google Scholar 

  • Roberts, B.: 1985, in E. R. Priest (ed.), Solar System Magnetic Fields, D. Reidel Publ. Co., Dordrecht, Holland, p. 37.

    Google Scholar 

  • Small, L. M. and Roberts, B.: 1984, in The Hydromagnetics of the Sun, ESA SP-220, p. 257.

  • Wentzel, D. G.: 1979, Astrophys. J. 227, 319.

    Google Scholar 

  • Woodard, M. F. and Libbrecht, K. G.: 1991, Astrophys. J. 374, L61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, A.J., Allen, H.R. & Roberts, B. Magnetoacoustic-gravity surface waves. Sol Phys 141, 235–251 (1992). https://doi.org/10.1007/BF00155177

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00155177

Keywords

Navigation