Skip to main content
Log in

Vegetation changes along a precipitation gradient in Central Argentina

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Changes in vegetation along a precipitation gradient in Central Argentina were studied. Floristic samples were taken along an east-west transect of about 300 km. Correlation analysis between precipitation and ordination axes was used to provide an environmental interpretation of vegetation variability.

Floristic analysis produced an ordination of plant communities from evergreen forests (precipitation >500 mm) to desert shrublands and therophyte communities (precipitation <200 mm). Results showed a trend of floristic and structural impoverishment towards the west. There is a replacement of species along the transect and a shift in dominant growth forms. The first ordination axis is significantly, negatively correlated with annual precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbour M. G., MacMahon J. A., BambergS. A. & Ludwig J. A. 1977. Growth and development, form and function. In: MabryT. J., HunzikerJ. H. & DiFeoD. R. (eds.) Creosote Bush: Biology and Chemistry of Larrea in New World Deserts. Dowden, Hutchinson & Ross, Pennsylvania 48–91.

    Google Scholar 

  • Braun-Blanquet J. 1950. Sociologia Vegetal. ACME, Bs. As. Cabrera, A. 1976. Regiones Fitogeográficas Argentinas. Acme, Buenos Aires.

    Google Scholar 

  • Cabido, M., Acosta, A., Carranza, M. L. & Díaz, S. La vegetación del Chaco árido de el W de la Provincia de Córdoba, Argentina. Doc. phytosociol. 13 (in press).

  • Chang D. H. S. & Gauch H. G. 1986. Multivariate analysis of plant communities and environmental factors in Ngari, Tibet. Ecology 67: 1568–1575.

    Google Scholar 

  • Cornelius J., Kemp P., Ludwig J. & Cunningham G. 1991. The distribution of vascular plant species and guilds in space and time along a desert gradient. J. Veg. Sci. 2: 59–72.

    Google Scholar 

  • Dannin A. & Orshan G. 1990. The distribution of Raunkiaer life forms in Israel in relation to the environment. J. Veg. Sci. 1: 41–48.

    Google Scholar 

  • Dargie T. C. D. & El Demerdash M. A. 1991. A quantitative study of vegetation-environment relationships in two Egyptian deserts. J. Veg. Sci. 2: 3–10.

    Google Scholar 

  • De Candollea. 1874. Constitution dans le regne vegetal de groupe physiologiques applicable a la Geographie botanique ancienne et moderne. Arch. Sci. Phys. Nat. 50: 5–42.

    Google Scholar 

  • Hauman, L. 1920. Ganadería y Geobotánica en la Argentina. Rev. Centro Est. Agron. y Vet. Bs. As. 102.

  • Hill M. & GauchH. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 47: 47–58.

    Google Scholar 

  • Knight D. H. & Loucks O. L. 1969. A quantitative analysis of Wisconsin forest vegetation on the basis of plant function and gross morphology. Ecology 50: 219–234.

    Google Scholar 

  • Lorentz, P. 1876. Cuadro de la Vegetación de la República Argentina. In: Napp. R. (ed.) La República Argentina. Bs. As. 77–136.

  • Mooney H. A. & LLoyd Dunn E. 1970. Convergent evolution of mediterranean climate evergreen sclerophyll shrubs. Evol. 24: 292–303.

    Google Scholar 

  • Morello, J. 1958. La provincia Fitogeográfica del Monte. Op. Lilloana II, Tucumán.

  • Noy-Meir I. 1973. Desert ecosystems: Environment and producers. Ann. Rev. Ecol. Syst. 4: 25–52.

    Google Scholar 

  • Parodi, L. R. 1945. Las regiones fitogeográficas argentinas y sus relaciones con la industria forestal. Plant and Plant Science in Latin America 127–132.

  • Parsons J. D. & Moldenke R. A. 1975. Convergence in vegetation structure along analogous climatic gradients in California and Chile. Ecology 56: 943–950.

    Google Scholar 

  • Sarmiento G. 1972. Ecological and floristic convergences between seasonal plants formations of tropical and subtropical South America. The J. Ecol. 60: 367–410.

    Google Scholar 

  • Shmida, A. 1985. Biogeography of the desert flora. In: Evenari, M., Noy-Meir, I. & Goodall, D. W. (eds.) Hot Deserts and Arid Shrublands Ecosystems of the world, Amsterdam 23–77.

  • Shmida, A. & Burguess, T. L. 1988. Plant growth-forms strategies and vegetation types in arid environments. In: Werger, M. J. A. (ed.) International Symposium of Vegetational Structure, The Hague 1–31.

  • Shmida, A. & Whittaker, R. H. 1979. Convergent evolution of arid regions in the New and Old World. In: Tuxen, R. (ed.) Werden und Vergehen von Pflanzengesellschaften, Vaduz 437–450.

  • Walter H. 1973. Vegetation of the earth in relation to climate and the ecophysiological conditions. Springer-Verlag, New York.

    Google Scholar 

  • Westman W. E. 1981. Factors influencing the distribution of species of Californian coastal sage scrub. Ecology 62: 439–455.

    Google Scholar 

  • Whittaker R. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monographs 26: 1–80.

    Google Scholar 

  • Whittaker R. H. 1977. Evolution of species diversity in land communities. Evol. Biol. 10: 1–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabido, M., González, C., Acosta, A. et al. Vegetation changes along a precipitation gradient in Central Argentina. Vegetatio 109, 5–14 (1993). https://doi.org/10.1007/BF00149541

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00149541

Keywords

Navigation