Skip to main content
Log in

Using duality to solve generalized fractional programming problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we explore the relations between the standard dual problem of a convex generalized fractional programming problem and the “partial” dual problem proposed by Barros et al. (1994). Taking into account the similarities between these dual problems and using basic duality results we propose a new algorithm to directly solve the standard dual of a convex generalized fractional programming problem, and hence the original primal problem, if strong duality holds. This new algorithm works in a similar way as the algorithm proposed in Barros et al. (1994) to solve the “partial” dual problem. Although the convergence rates of both algorithms are similar, the new algorithm requires slightly more restrictive assumptions to ensure a superlinear convergence rate. An important characteristic of the new algorithm is that it extends to the nonlinear case the Dinkelbach-type algorithm of Crouzeix et al. (1985) applied to the standard dual problem of a generalized linear fractional program. Moreover, the general duality results derived for the nonlinear case, yield an alternative way to derive the standard dual of a generalized linear fractional program. The numerical results, in case of quadratic-linear ratios and linear constraints, show that solving the standard dual via the new algorithm is in most cases more efficient than applying directly the Dinkelbach-type algorithm to the original generalized fractional programming problem. However, the numerical results also indicate that solving the alternative dual (Barros et al., 1994) is in general more efficient than solving the standard dual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avriel, M., Diewert, W., Schaible, S., and Zang, I. (1988). Generalized Concavity, volume 36 of Mathematical Concepts and Methods in Science and Engineering. Plenum Press, New York.

    Google Scholar 

  • Barros, A. (1995). Discrete and Fractional Programming Techniques for Location Models, volume 89 of Tinbergen Institute Research Series. Thesis Publishers, Amsterdam.

    Google Scholar 

  • Barros, A., Frenk, J., Schaible, S., and Zhang, S. (1994). A new algorithm for generalized fractional programs. Technical Report TI-94-23, Tinbergen Institute Rotterdam. To appear in Mathematical Programming.

  • Benadada, Y. (1989). Approches de résolution du probléme de programmation fractionnaire généralisée. Ph.D. thesis, Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Canada.

    Google Scholar 

  • Bernard, J. and Ferland, J. (1989). Convergence of interval-type algorithms for generalized fractional programming. Mathematical Programming, 43, 349–364.

    Google Scholar 

  • Bohnenblust, H., Karlin, S., and Shapley, L. (1950). Solutions of discrete two-person games. Annals of Mathematics Studies, 24, 51–72.

    Google Scholar 

  • Charnes, A. and Cooper, W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9, 181–186.

    Google Scholar 

  • Craven, B. (1988). Fractional Programming. Heldermann-Verlag, Berlin.

    Google Scholar 

  • Crouzeix, J. and Ferland, J. (1991). Algorithms for generalized fractional programming. Mathematical Programming, 52(2), 191–207.

    Google Scholar 

  • Crouzeix, J., Ferland, J., and Schaible, S. (1983). Duality in generalized linear fractional programming. Mathematical Programming, 27(3), 342–354.

    Google Scholar 

  • Crouzeix, J., Ferland, J., and Schaible, S. (1985). An algorithm for generalized fractional programs. Journal of Optimization Theory and Applications, 47(1), 35–49.

    Google Scholar 

  • Crouzeix, J., Ferland, J., and Schaible, S. (1986). A note on an algorithm for generalized fractional programs. Journal of Optimization Theory and Applications, 50(1), 183–187.

    Google Scholar 

  • Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.

    Google Scholar 

  • Ferland, J. and Potvin, J. (1985). Generalized fractional programming: Algorithms and numerical experimentation. European Journal of Operational Research, 20, 92–101.

    Google Scholar 

  • Hiriart-Urruty, J. and Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms I: Fundamentals, volume 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Jagannathan, R. and Schaible, S. (1983). Duality in generalized fractional programming via Farkas' lemma. Journal of Optimization Theory and Applications, 41(3), 417–424.

    Google Scholar 

  • Outrata, J., Schramm, H., and Zowe, J. (1991). Bundle trust methods: Fortran codes for nondifferentiable optimization. User's guide. Technical Report 269, Mathematisches Institut. Universität Bayreuth.

  • Pardalos, P.M. and Phillips, A.T. (1991). Global optimization of fractional programs. Journal of Global Optimization, 1(2), 173–182.

    Google Scholar 

  • Pshenichnyi, B. (1971). Necessary Conditions for an Extremum. Marcel Dekker Inc., New York.

    Google Scholar 

  • Ravindran, A. (1972). A computer routine for quadratic and linear programming problems. Communications of the ACM, 15(9), 818.

    Google Scholar 

  • Rockafellar, R. (1970). Convex Analysis. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Rockafellar, R. (1983). Generalized subgradients in mathematical programminng. In A. Bachem, M. Grötschel, and B. Korte, editors, Mathematical Programming. The State of the Art, chapter 2, pages 368–390. Springer-Verlag.

  • Schaible, S. (1978). Analyse und Anwendungen von Quotientenprogrammen, ein Beitrag zur Planung mit Hilfe der Nichtlinearen Programmierung, volume 42 of Mathematical Systems in Economics. Hain-Verlag, Meisenheim.

    Google Scholar 

  • Schaible, S. (1983). Fractional programming. Zeitschrift für Operations Research, 27, 39–54.

    Google Scholar 

  • Schaible, S. and Ibaraki, T. (1983). Fractional programming (Invited Review). European Journal of Operational Research, 12, 325–338.

    Google Scholar 

  • Sion, M. (1958). On general minimax theorems. Pacific Journal of Mathematics, 8, 171–176.

    Google Scholar 

  • Werner, J. (1988). Duality in generalized fractional programming. In K. Hoffman, J. Hiriart-Urruty, C. Lemaréchal, and J. Zowe, editors, Trends in Mathematical Optimization, International Series of Numerical Mathematics, pages 197–232, Birkhäuser-Verlag Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was carried out at the Econometric Institute, Erasmus University Rotterdam, the Netherlands and was supported by the Tinbergen Institute Rotterdam

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barros, A.I., Frenk, J.B.G., Schaible, S. et al. Using duality to solve generalized fractional programming problems. J Glob Optim 8, 139–170 (1996). https://doi.org/10.1007/BF00138690

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00138690

Key words

Navigation