Skip to main content
Log in

An ice breeze mechanism for boundary-layer jets

  • Research Note
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The existence of a low-level (z=~1000 m) jet adjacent to a sea-ice boundary is investigated with a two-dimensional numerical model. A thermally-direct ice breeze circulation is induced by specifying an ice-sea surface temperature gradient, with the mean geostrophic wind parallel to the ice edge. Pressure changes associated with over-water mixed-layer development create an increase in geostrophic velocity that accounts for most of the increase in wind speed. A change in initial geostrophic wind direction has significant effects on location and intensity of the low-level jet; geostrophic winds parallel to the ice edge result in stronger jets than occur with cross-ice geostrophic winds. An inertial oscillation simulated by the model in 1-D makes a negligible contribution to the low-level jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., Kuo, Y-R, Benjamin, S. G., and Li, Y-F.: 1982, ‘The Evolution of the Mesoscale Environment of Severe Local Storms: Preliminary Modeling Results’, Mon. Weather Rev. 110, 1187–1198.

    Google Scholar 

  • Blackadar, A. K.: 1957, ‘Boundary Layer Wind Maxima and their Significance for the Growth of Nocturnal Inversions’, Bull. Am. Meteorol. Soc. 38, 283–290.

    Google Scholar 

  • Brook, R. R.: 1985, ‘The Koorin Nocturnal Low-Level Jet’, Boundary-Layer Meteorol. 32, 133–154.

    Google Scholar 

  • Brost, R. A., Lenschow, D. H., and Wyngaard, J. C.: 1982, ‘Marine Stratocumulus Layers. Part 1: Mean Conditions’, J. Atmos. Sci. 39, 800–817.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surfaces Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Chao, S. Y.: 1985, ‘Coastal Jets in the Lower Atmosphere’, J. Phys. Ocean. 15, 361–371.

    Google Scholar 

  • Chu, P. C.: 1986, ‘An Instability Theory of Ice-Air Interaction of the Migration of the Marginal Ice Zone’, Geophys. J. R. Astr. Soc. 86, 863–883.

    Google Scholar 

  • Dickison, R. B. B. and Neumann, H. H.: 1982, ‘The Occurrence of Nocturnal Low-Level Jets in New England and the Canadian Maritimes’, Atmosphere-Ocean 20(4), 287–300.

    Google Scholar 

  • Holton, J. R.: 1967, ‘The Diurnal Boundary Layer Wind Oscillation Above Sloping Terrain’, Tellus 19, 199–205.

    Google Scholar 

  • Holton, J. R.: 1979, An Introduction to Dynamic Meteorology. 2nd Ed., Academic Press, New York, 391 pp.

    Google Scholar 

  • Langland, R. H., Tag, P. M., and Fett, R. W.: 1987, ‘Numerical Simulation of a Satellite-Observed Calm Zone in Monterey Bay, California’, Wea. and For. 1, 261–268.

    Google Scholar 

  • Louis, J. F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202.

    Google Scholar 

  • Malcher, J., and Kraus, H.: 1983, ‘Low-Level Jet Phenomenon Described by an Integrated Dynamical PBL Model’, Boundary-Layer Meteorol. 27, 327–343.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • Reiter, E. R.: 1961, Jet Stream Meteorology. The University of Chicago Press, Chicago, Ill., 515 pp.

    Google Scholar 

  • Rossby, C. G. and Montgomery, R. B.: 1935, ‘The Layer of Frictional Influence in Wind and Ocean Currents’, Papers in Phys. Ocean. and Meteor. 3, MIT and Woods Hole Ocean Inst., Woods Hole, Mass., 101 pp.

    Google Scholar 

  • Schwerdtfeger, W.: 1972, ‘The Vertical Variation of the Wind Through the Friction-Layer over the Greenland Ice Cap’, Tellus 24, 13–16.

    Google Scholar 

  • Shapiro, M. A. and Fedor, L. S.: 1986. The Arctic Expedition, 1984: Research Aircraft Observations of Fronts and Polar Lows Over the Norwegian and Barents Sea, Part 1. NOAA/ERL/Wave Propagation Laboratory, Boulder, CO 80303, 56 pp.

    Google Scholar 

  • Tag, P. M.: 1979, ‘A Numerical Simulation of Fog Dissipation Using Passive Burner Lines. Part 1: Model Development and Comparison with Observations’, J. Appl. Meteorol. 18, 1442–1454.

    Google Scholar 

  • Tag, P. M. and Payne, S. W.: 1987, ‘An Examination of the Breakup of Marine Stratus: A Three-Dimensional Numerical Investigation’, J. Atmos. Sci. 44, 208–223.

    Google Scholar 

  • Tag, P. M. and Rosmond, T. E.: 1980, ‘Accuracy and Energy Conservation in a Three-Dimensional Anelastic Model’, J. Atmos. Sci. 37, 2150–2168.

    Google Scholar 

  • Tag, P. M., Murray, F. W., and Koenig, L. R.: 1979, ‘A Comparison of Several Forms of Eddy Viscosity Parameterization in a Two-Dimensional Cloud Model’, J. Appl. Meteorol. 18, 1429–1441.

    Google Scholar 

  • Zemba, J., and Friehe, C. A.: 1987, ‘The Marine Atmospheric Boundary Layer in the Coastal Ocean Dynamics Experiment’, J. Geophys. Res. 92, 1489–1496.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langland, R.H., Tag, P.M. & Fett, R.W. An ice breeze mechanism for boundary-layer jets. Boundary-Layer Meteorol 48, 177–195 (1989). https://doi.org/10.1007/BF00121789

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121789

Keywords

Navigation