Skip to main content
Log in

Degradation of halogenated aromatic compounds

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Due to their persistence, haloaromatics are compounds of environmental concern. Aerobically, bacteria degrade these compounds by mono- or dioxygenation of the aromatic ring. The common intermediate of these reactions is (halo)catechol. Halocatechol is cleaved either intradiol (ortho-cleavage) or extradiol (meta-cleavage). In contrast to ortho-cleavage, meta-cleavage of halocatechols yields toxic metabolites. Dehalogenation may occur fortuitously during oxygenation. Specific dehalogenation of aromatic compounds is performed by hydroxylases, in which the halo-substituent is replaced by a hydroxyl group. During reductive dehalogenation, haloaromatic compounds may act as electron-acceptors. Herewith, the halosubstituent is replaced by a hydrogen atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBz:

chlorobenzene

DCBz:

dichlorobenzene

TrCBz:

trichlorobenzene

TCBz:

tetrachlorobenzene

PCBz:

pentachlorobenzene

HCBz:

hexachlorobenzene

CBA:

chlorobenzoic acid

BBA:

bromobenzoic acid

FBA:

fluorobenzoic acid

IBA:

iodobenzoic acid

CP:

chlorophenol

CA:

chloroaniline

PCBs:

polychlorinated biphenyls

CB:

chlorobiphenyl

2,4-D:

2,4-dichlorophenoxyacetic acid

2,4,5-T:

2,4,5-trichlorophenoxyacetic acid

References

  • Adriaens, P, Kohler, H-PE, Kohler-Staub, D & Focht, DD (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4′-dichlorobiphenyl. Appl. Environ. Microbiol. 55: 887–892

    Google Scholar 

  • Adriaens, P & Focht, DD (1990) Continuous coculture degradation of selected polychlorinated biphenyl congeners by Acinetobacter spp. in an aerobic reactor system. Environ. Sci. Technol. 24: 1042–1049

    Google Scholar 

  • Allard, A-S, Remberger, M & Neilson, AH (1985) Bacterial O-methylation of chloroguaiacols: Effect of substrate concentration, cell density, and growth conditions. Appl. Environ. Microbiol. 49: 279–288

    Google Scholar 

  • Apajalatiti, JHA & Salkinoja-Salonen, MS (1987a) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J. Bacteriol. 169: 675–681

    Google Scholar 

  • Apajalatiti, JHA & Salkinoja-Salonen, MS (1987b) Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J. Bacteriol. 169: 5125–5130

    Google Scholar 

  • Bailey, RE, Gonsior, SJ & Rhinehart, WL (1983) Biodegradation of the monochlorobiphenyls and biphenyl in river water. Environ. Sci. Technol. 17: 617–624

    Google Scholar 

  • Ballschmiter, K & Scholz, C (1981) Primärschritte der Umwandlung von Chlorbenzol-Derivaten durch Pseudomonas putida. Angew. Chem. 93: 1026–1027

    Google Scholar 

  • Baxter, RM & Sutherland, DA (1984) Biochemical and photochemical processes in the degradation of chlorinated biphenyls. Environ. Sci. Technol. 18: 608–610

    Google Scholar 

  • Bedard, DL, Unterman, R, Bopp, LH, Brennan, MJ, Haberl, ML & Johnson, C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51: 761–768

    Google Scholar 

  • Bedard, DL, Wagner, RE, Brennan, MJ, Haberl, ME & Brown Jr, JF (1987a) Extensive degradation of Arochlors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1094–1102

    Google Scholar 

  • Bedard, DL, Haberl, ML, May, RJ & Brennan, MJ (1987b) Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1103–1112

    Google Scholar 

  • Bollag, JM, Helling, CS & Alexander, M (1968a) 2,4-D Metabolism: Enzymatic hydroxylation of chlorinated phenols. J. Agric. Food Chem. 16: 826–828

    Google Scholar 

  • Bollag, JM, Briggs, GG, Dawson, JE & Alexander, M (1968b) 2,4-D Metabolism: Enzymatic degradation of chlorocatechols. J. Agric. Food Chem. 16: 829–833

    Google Scholar 

  • de Bont, JAM, Vorage, MJAW, Hartmans, S & van den Tweel, WJJ (1986) Microbial Degradation of 1,3-Dichlorobenzene. Appl. Environ. Microbiol. 52: 677–680

    Google Scholar 

  • Bopp, LH (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1: 23–29

    Google Scholar 

  • Bosma, TNP, Van der Meer, JR, Schraa, G, Tros, ME & Zehnder, AJB (1988) Reductive dechlorination of all trichloro- and dichlorobenzene isomers. FEMS Microbiol. Ecol. 53: 223–229

    Google Scholar 

  • Boyd, SA & Shelton, DR (1984) Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl. Environ. Microbiol. 47: 272–277

    Google Scholar 

  • Brown Jr, JF, Bedard, DL, Brennan, MJ, Carnahan, JC, Feng, H & Wagner, RE (1987a) Polychlorinated biphenyl dechlorination in aquatic sediments. Science 236: 709–712

    Google Scholar 

  • Brown Jr, JF, Wagner, RE, Feng, H, Bedard, DL, Brennan, MJ, Carnahan, JC & May, RJ (1987b) Environmental dechlorination of PCBs. Environ. Toxicol. Chem. 6: 579–593

    Google Scholar 

  • Brunner, W, Sutherland, FH & Focht, DD (1985) Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J. Environ. Qual. 14: 324–328

    Google Scholar 

  • Cain, RB, Trantner, EK & Darrah, JA (1968) The utilization of some halogenated aromatic acids by Nocardia: oxidation and metabolism. Biochem. J. 106: 211–227

    Google Scholar 

  • Carney, BF, Kröckel, L, Leary, JV & Focht, DD (1989a) Identification of Pseudomonas alcalignes chromosomal DNA in the plasmid DNA of the chlorobenzene-degrading recombinant Pseudomonas putida strain CB1–9. Appl. Environ. Microbiol. 55: 1037–1039

    Google Scholar 

  • Carney, BF & Leary, JV (1989b) Novel alterations in plasmid DNA associated with aromatic hydrocarbon utilization by Pseudomonas putida R5–3. Appl. Environ. Microbiol. 55: 1523–1530

    Google Scholar 

  • Chatterjee, DK, Hamada, S & Chakrabarty, AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J. Bacteriol. 146: 639–646

    Google Scholar 

  • Chu, JP & Kirsch, EJ (1972) Metabolism of pentachlorophenol by an axenic bacterial culture. Appl. Environ. Microbiol. 23: 1033–1035

    Google Scholar 

  • Clarke, KF, Callely, AG, Livingstone, A & Fewson, CA (1975) Metabolism of monofluorobenzoates by Acinetobacter calcoaceticus N.C.I.B. 8250: formation of monofluorocatechols. Biochim. Biophys. Acta 404: 169–179

    Google Scholar 

  • Corke, CT, Bunce, NJ, Beaumont, AL & Merrick, RL (1979) Diazonium cations as intermediates in the microbial transformation of chloroanilines to chlorinated biphenyls, azo compounds, and triazenes. J. Agric. Food Chem. 27: 644–646

    Google Scholar 

  • DeWeerd, KA, Suflita, JM, Linkfield, T, Tiedje, JM & Pritchard, PH (1986) The relationship between reductive dehalogenation and other aryl substituent removal reactions catalyzed by anaerobes. FEMS Microbiol. Ecol. 38: 331–339

    Google Scholar 

  • DeWeerd, KA, Mandelco, L, Tanner, RS, Woese, CR & Suflita, JM (1990) Desulfomonile tiedjei gen nov and sp nov, a novel anaerobic dehalogenating sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30

    Google Scholar 

  • Dolfing, J & Tiedje, JM (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol. Ecol. 38: 293–298

    Google Scholar 

  • (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch. Microbiol. 149: 102–105

    Google Scholar 

  • Dolfing, J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch. Microbiol. 153: 264–266

    Google Scholar 

  • Engelhardt, G, Rast, HG & Wallnöfer, PR (1979) Cometabolism of phenol and substituted phenols by Nocardia spec. DSM 43251. FEMS Microbiol. Lett. 5: 377–383

    Google Scholar 

  • Engesser, KH & Schulte, P (1989) Degradation of 2-bromo-2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250. FEMS Microbiol. Lett. 60: 143–148

    Google Scholar 

  • Engesser, KH, Auling, G, Busse, J & Knackmuss, H-J (1990) 3-Fluorobenzoate enriched bacterial strain FLB 300 degrades benzoate and all three isomeric monofluorobenzoates. Arch. Microbiol. 153: 193–199

    Google Scholar 

  • Evans, WC, Smith, BSW, Fernley, HN & Davies, JI (1971) Bacterial Metabolism of 2,4-Dichlorophenoxyacetate. Biochem. J. 122: 543–552

    Google Scholar 

  • Fathepure, BZ, Tiedje, JM & Boyd, SA (1988) Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol. 54: 327–330

    Google Scholar 

  • Fetzner, S, Müller, R & Lingens, F (1989) A novel metabolite in the microbial degradation of 2-chlorobenzoate. Biochem. Biophys. Res. Commun. 161: 700–705

    Google Scholar 

  • Focht, DD & Shelton, D (1987) Growth kinetics of Pseudomonas alcaligenes C-0 relative to inoculation and 3-chlorobenzoate metabolism in soil. Appl. Environ. Microbiol. 53: 1846–1849

    Google Scholar 

  • Fries, GF & Marrow, GS (1984) Metabolism of chlorobiphenyls in soil. Bull. Environ. Contam. Toxicol. 33: 6–12

    Google Scholar 

  • Furukawa, K (1982) Microbial degradation of polychlorinated biphenyls (PCBs). In: Chakrabarty, AM (Ed) Biodegradation and Detoxification of Environmental Pollutants CRC Boca Raton FLA (pp 33–57)

    Google Scholar 

  • Gibson, SA & Suflita, JM (1990) Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid in samples from methanogenic aquifer: Stimulation by short-chain organic acids and alcohols. Appl. Environ. Microbiol. 56: 1825–1832

    Google Scholar 

  • Goldman, P, Milne, GWA & Pignataro, MT (1967) Fluorine containing metabolites formed from 2-fluorobenzioc acid by Pseudomonas species. Arch. Biochem. Biophys. 118: 178–184

    Google Scholar 

  • Groenewegen, PEJ, Driessen, AJM, Konings, WN & de Bont, JAM (1990) Energy-dependent uptake in the Coryneform bacterium NTB-1. J. Bacteriol. 172: 419–423

    Google Scholar 

  • Haigler, BE, Nishino, SF & Spain, JC (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 54: 294–301

    Google Scholar 

  • Haigler, BE & Spain, JC (1989) Degradation of p-chlorotoluene by a mutant of Pseudomonas sp. strain JS6. Appl. Environ. Microbiol. 55: 372–379

    Google Scholar 

  • Häggblom, MM, Nohynek, LJ & Salkinoja-Salonen, MS (1988) Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54: 3043–3052

    Google Scholar 

  • Häggblom, MM, Janke, D & Salkinoja-Salonen, MS (1989a) Hydroxylation and dechlorination of tetrachlorohydroquinone by Rhodococcus sp. strain CP-2 cell extracts. Appl. Environ. Microbiol. 55: 516–519

    Google Scholar 

  • Häggblom, MM, Janke, D, Middeldorp, PJM & Salkinoja-Salonen, MS (1989b) O-methylation of chlorinated phenols in the genus Rhodococcus. Arch. Microbiol. 152: 6–9

    Google Scholar 

  • Hankin, L & Sawhney, BL (1984) Microbial Degradation of Polychlorinated Biphenyls in Soil. Soil Sci. 137: 401–407

    Google Scholar 

  • Harms, H, Wittich, R-M, Sinnwell, V, Meyer, H, Fortnagel, P & Francke, W (1990) Transformation of dibenzo-p-dioxin by Pseudomonas sp. strain HH69. Appl. Environ. Microbiol. 56: 1157–1159

    Google Scholar 

  • Hartmann, J, Reineke, W & Knackmuss, H-J (1979) Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a Pseudomonad. Appl. Environ. Microbiol. 37: 421–428

    Google Scholar 

  • Hartmann, J, Engelberts, K, Nordhaus, B, Schmidt, E & Reineke, W (1989) Degradation of 2-chlorobenzoate by in vivo constructed hybrid Pseudomonads. FEMS Microbiol. Lett. 61: 17–22

    Google Scholar 

  • Haugland, RA, Schlemm, DJ, Lyons III, RP, Sferra, PR & Chakrabarty, AM (1990) Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 56: 1357–1362

    Google Scholar 

  • Higson, FK & Focht, DD (1990) Degradation of 2-Bromobenzoic Acid by a Strain of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 56: 1615–1619

    Google Scholar 

  • Hiramoto, M, Ohtake, H & Toda, K (1989) A kinetic study on total degradation of 4-chlorobiphenyl by a two-step culture of Arthrobacter and Pseudomonas strains. J. Fermentation Bioeng. 1: 68–70

    Google Scholar 

  • Horowitz, A, Suflita, JM & Tiedje, JM (1983) Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl. Environ. Microbiol. 45: 1459–1461

    Google Scholar 

  • Horvath, M, Ditzelmüller, G, Loidl, M & Streichsbier, F (1990) Isolation and characterization of a 2-(2,4-dichlorophenoxy) propionic acid-degrading soil bacterium. Appl. Microbiol. Biotechnol. 33: 213–216

    Google Scholar 

  • Janke, D, Al-Mofarji, T, Straube, G, Schumann, P & Prauser, H (1988a) Critical steps in the degradation of chloroaromatics by Rhodococci. I. Initial enzyme reactions involved in catabolism of aniline, phenol and benzoate by Rhodococcus sp. An 117 and An 213. J. Basic Microbiol. 8: 509–518

    Google Scholar 

  • Janke, D, Al-Mofarji, T & Schukat, B (1988b) Critical steps in degradation of chloroaromatics by Rhodococci. II. Whole-cell turnover of different monochloroaromatic non-growth substrates by Rhodococcus sp. An 117 and An 213 in the absence/presence of glucose. J. Basic Microbiol. 8: 519–528

    Google Scholar 

  • Johston, HW, Briggs, GG & Alexander, M (1972) Metabolism of 3-chlorobenzoic acid by a Pseudomonad. Soil. Biol. Biochem. 4: 187–190

    Google Scholar 

  • Karns, JS, Kilbane, JJ, Duttagupta, S & Chakrabarty, AM (1983a) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl. Environ. Microbiol. 46: 1176–1181

    Google Scholar 

  • Karns, JS, Duttagupta, S & Chakrabarty, AM (1983b) Regulation of 2,4,5-trichlorophenoxyacetic acid and chlorophenol metabolism in Pseudomonas cepacia AC 1100. Appl. Environ. Microbiol. 46: 1182–1186

    Google Scholar 

  • Keil, H, Klages, U & Lingens, F (1981) Degradation of 4-chlorobenzoate by Pseudomonas sp. CBS3: induction of catabolic enzymes. FEMS Microbiol. Lett. 10: 213–215

    Google Scholar 

  • Kimbara, K, Hashimoto, T, Fukuda, M, Koana, T, Takagi, M, Oishi, M & Yano, K (1988) Isolation and characterization of a mixed culture that degrades polychlorinated biphenyls. Agric. Biol. Chem. 52: 2885–2891

    Google Scholar 

  • King, GM (1988) Dehalogenation in marine sediments containing natural sources of halophenols. Appl. Environ. Microbiol. 54: 3079–3085

    Google Scholar 

  • Klecka, GM & Gibson, DT (1980) Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxins by a Beijerinckia species. Appl. Environ. Microbiol. 39: 288–296

    Google Scholar 

  • Knackmuss, H-J & Hellwig, M (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13. Arch. Microbiol. 117: 1–7

    Google Scholar 

  • Kong, H-Y & Sayler, GS (1983) Degradation and total mineralization of monohalogenated biphenyls in natural sediment and mixed microbial culture. Appl. Environ. Microbiol. 46: 666–672

    Google Scholar 

  • Konopka, A, Knight, D & Turco, RF (1989) Characterization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources. Appl. Environ. Microbiol. 55: 385–389

    Google Scholar 

  • Kröckel, L & Focht, DD (1987) Construction of chlorobenzeneutilizing recombinants by progressive manifestation of a rare event. Appl. Environ. Microbiol. 53: 2470–2475

    Google Scholar 

  • Kuhn, EP & Suflita, JM (1989) Sequential reductive dehalogenation of chloroanilines by microorganisms from a methanogenic aquifer. Environ. Sci. Technol. 23: 848–852

    Google Scholar 

  • Lammerding, AM, Bunce, NJ, Merrick, RL & Corke, CT (1982) Structural effects on the microbial diazotization of anilines. J. Agric. Food Chem. 30: 644–647

    Google Scholar 

  • Lehrbach, RP, Zeyer, J, Reineke, W, Knackmuss, H-J & Timmis, KN (1984) Enzyme Recruitment in vitro: Use of Clones Genes to Extend the Range of Haloaromatics Degraded by Pseudomonas sp. strain B13. J. Bacteriol. 158: 1025–1032

    Google Scholar 

  • Linkfield, TG & Tiedje, JM (1990) Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J. Ind. Microbiol. 5: 9–16

    Google Scholar 

  • Marinucci, AC & Bartha, R (1979) Biodegradation of 1,2,3- and 1,2,4-trichlorobenzene in soil and in liquid enrichment culture. Appl. Environ. Microbiol. 38: 811–817

    Google Scholar 

  • Marks, TS, Smith, ARW & Quirk, AV (1984a) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl. Environ. Microbiol. 48: 1020–1025

    Google Scholar 

  • Marks, TS, Wait, R, Smith, ARW & Quirk, AV (1984b) The origin of the oxygen incorporated during the dehalogenation/hydroxylation of 4-chlorobenzoic acid by an Arthrobacter sp. Biochem. Biophys. Res. Commun. 124: 669–674

    Google Scholar 

  • van der Meer, JR, Roelofsen, W, Schraa, G & Zehnder, AJB (1987) Degradation of Low Concentrations of Dichlorobenzenes and 1,2,4-Trichlorobenzene by Pseudomonas sp. P51 in Nonsterile Soil Columns. FEMS Microbiol. Ecol. 45: 333–341

    Google Scholar 

  • Mikesell, MD & Boyd, SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52: 861–865

    Google Scholar 

  • Milne, GWA, Goldman, P & Holtzman, JL (1968) The metabolism of 2-fluorobenzoic acid: studies with 18O2. J. Biol. Chem. 243: 5374–5376

    Google Scholar 

  • Minard, RD, Russel, S & Bollag, JM (1977) Chemical transformation of 4-chloroaniline to a triazene in a bacterial culture medium. J. Agric. Food Chem. 25: 841

    Google Scholar 

  • Mohn, WW, Linkfield, TG, Pankratz, HS & Tiedje, JM (1990) Involvement of a collar structure in polar growth and cell division of strain DCB-1. Appl. Environ. Microbiol. 56: 1206–1211

    Google Scholar 

  • Mohn, WM & Tieje, JM (1990) Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch. Microbiol. 153: 267–271

    Google Scholar 

  • Müller, R, Thiele, J, Klages, U & Lingens, F (1984) Incorporation of [18O H2O] water into 4-hydroxybenzoic acid in the reaction of 4-chlorobenzoate dehalogenase from Pseudomonas spec. CBS3. Biochem. Biophys. Res. Commun. 124: 178–182

    Google Scholar 

  • Müller, R, Oltmans, RH & Lingens, F (1988) Enzymic dehalogenation of 4-chlorobenzoate by extracts from Arthrobacter sp. SU DSM 20407. Biol. Chem. Hoppe-Seyler 369: 567–571

    Google Scholar 

  • Neilson, AH, Lindgren, C, Hynning, P-A & Remberger, M (1988) Methylation of halogenated phenols and thiophenols by cell extracts of Gram-positive and Gram-negative bacteria. Appl. Environ. Microbiol. 54: 524–530.

    Google Scholar 

  • Ohmori, T, Ikai, T, Minoda, Y & Yamada, K (1973) Utilization of Hydrocarbons by Microorganisms. XXV. Utilization of Polyphenyl and Polyphenyl-related Compounds by Microorganimsms. Agric. Biol. Chem. 37: 1599–1605

    Google Scholar 

  • Oltmanns, RH, Müller, R, Otto, MK & Lingens, F (1989) Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl. Environ. Microbiol. 55: 2499–2504

    Google Scholar 

  • Pardue, JH, Delaune, RD & Patrick Jr., WH (1988) Effect of sediment pH and oxidation-reduction potential on PCB mineralization. Water Air Soil Pollut. 37: 439–447

    Google Scholar 

  • Parsons, J, Veerkamp, W & Hutzinger, O (1983) Microbial metabolism of chlorobiphenyls. Toxicol. Environ. Chem. 6: 327–350

    Google Scholar 

  • Parsons, JR, Sijm, DTHM, van Laar, A & Hutzinger, O (1988) Biodegradation of chlorinated biphenyls and benzoic acids by a Pseudomonas strain. Appl. Microbiol. Biotechnol. 29: 81–84

    Google Scholar 

  • Parsons, JR & Storms, MCM (1989) Biodegradation of chlorinated dibenzo-p-dioxins in batch and continuous cultures of strain JB1. Chemosphere 19: 1297–1308

    Google Scholar 

  • Parsons, JR, Ratsak, C & Siekerman, C (1990) Biodegradation of chlorinated dibenzofurans by an Alcaligenes strain. In: Hutzinger, O and Fiedler, H (Eds) Organohalogen Compounds. Proc. Dioxin '90-EPRI Seminar, Sept. 10–14, 1990, Bayreuth, Vol 1 (pp 377–380). Ecoinforma Press, Bayreuth, F.R.G.

    Google Scholar 

  • Pettigrew, CA, Breen, A, Corcoran, C & Sayler, GS (1990) Chlorinated Biphenyl Mineralization by Individual Populations and Consortia of freshwater Bacteria. Appl. Environ. Microbiol. 56: 2036–2045

    Google Scholar 

  • Philippi, M, Schmid, J, Wipf, HK & Hütter, RA (1982) A microbial metabolite of TCDD. Experientia 38: 659–661

    Google Scholar 

  • Pieper DH, Reineke W, Engesser K-H, Knackmuss H-J (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134.

  • Quensen III, JF & Matsumura, F (1983) Oxidative degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin by microorganisms. Environ. Toxicol. Chem. 2: 261–268

    Google Scholar 

  • Quensen III, JF, Tiedje, JM & Boyd, SA (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242: 752–754

    Google Scholar 

  • Quensen III, JF, Boyd, SA & Tiedje, JM (1990) Dechlorination of Four Commercial Polychlorinated Biphenyl Mixtures (Aroclors) by Anaerobic Microorganisms from Sediments. Appl. Environ. Microbiol. 56: 2360–2369

    Google Scholar 

  • Reineke, W (1984) Microbial degradation of halogenated aromatic compounds. Microbiol. Ser. 13: 319–360

    Google Scholar 

  • Reineke, W & Knackmuss, H-J (1984) Microbial metabolism of haloaromatics. Isolation and properties of a chlorobenzenedegrading bacterium. Appl. Environ. Microbiol. 47: 395–402

    Google Scholar 

  • Reineke, W & Knackmuss, H-J (1988) Microbial degradation of haloaromatics. Ann. Rev. Microbiol. 42: 263–287

    Google Scholar 

  • Reineke, W & Knackmuss, H-J (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J. Bacteriol. 142: 467–473

    Google Scholar 

  • Ruisinger, S, Klages, U & Lingens, F (1976) Abbau der 4-Chlorobenzoesaure durch eine Arthrobacterspecies. Arch. Microbiol. 110: 253–256

    Google Scholar 

  • Safe, SH (1984) Microbial degradation of polychlorinated biphenyls. Microbiol. Ser. 13: 361–369

    Google Scholar 

  • Sangodkar, UMX, Aldrich, TL, Haugland, RA, Johnson, J, Rothmel, RK, Chapman, PJ & Chakrabarty, AM (1989) Molecular basis of biodegradation of chloroaromatic compounds. Acta Biotechnol. 9: 301–316

    Google Scholar 

  • Savard, P, Péloquin, L & Sylvestre, M (1990) Cloning of Pseudomonas strain CBS3 Genes Specifying Dehalogenation of 4-Chlorobenzoate. J. Bacteriol. 168: 81–85

    Google Scholar 

  • Schlömann, M, Fischer, P, Schmidt, E & Knackmuss, H-J (1990) Enzymatic Formation, Stability, and Spontaneous Reactions of 4-Fluoromuconolactone, a Metabolite of the Bacterial Degradation of 4-Fluorobenzoate. J. Bacteriol. 172: 5119–5129

    Google Scholar 

  • Schmidt, E (1988) Bioconversion of 3-chlorobenzoate to 2-chloromuconate controlled by on line HPLC. Appl. Microbiol. Biotechnol. 27: 347–350

    Google Scholar 

  • Schmidt, E, Hellwig, M & Knackmuss, H-J (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl. Environ. Microbiol. 46: 1038–1044

    Google Scholar 

  • Schmidt, E & Knackmuss, H-J (1984) Production of cis, cis-muconate from benzoate and 2-fluoro-cis, cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria. Appl. Microbiol. Biotechnol. 20: 351–355

    Google Scholar 

  • Schraa, G, Boone, ML, Jetten, MSM, van Neerven, ARW, Colberg, PJ & Zehnder, AJB (1986) Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381

    Google Scholar 

  • Schreiber, A, Hellwig, M, Dorn, E, Reineke, W & Knackmuss, H-J (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp B13. Appl. Environ. Microbiol. 39: 58–67

    Google Scholar 

  • Schwien, U & Schmidt, E (1982) Improved degradation of monochlorophenols by a constucted strain. Appl. Environ. Microbiol. 44: 33–39

    Google Scholar 

  • Sharak Genthner, BR, Price II, WA & Pritchard, PH (1989a) Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl. Environ. Microbiol. 55: 1466–1471

    Google Scholar 

  • (1989b) Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl. Environ. Microbiol. 55: 1472–1476

    Google Scholar 

  • Shelton, DR & Tiedje, JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48: 840–848

    Google Scholar 

  • Shiaris, MP & Sayler, GS (1982) Biotransformation of PCBs by natural assemblages of freshwater microorganisms. Environ. Sci. Technol. 16: 367–369

    Google Scholar 

  • Spain, JC & Nishino, SF (1987) Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53: 1010–1019

    Google Scholar 

  • Sperl, GT & Harvey, GJ (1988) Microbial adaptation to bromobenzene in a chemostat. Curr. Microbiol. 17: 99–103

    Google Scholar 

  • Spokes, JR & Walker, N (1974) Chlorophenol and chlorobenzoic acid co-metabolism by different genera of soil bacterial. Arch. Microbiol. 96: 125–134

    Google Scholar 

  • Steiert, JG & Crawford, RL (1986) Catabolism of pentachlorophenol by a Flavobacterium bacterium. Biochem. Biophys. Res. Commun. 141: 825–830

    Google Scholar 

  • Steiert, JG, Pignatello, JJ & Crawford, RL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 53: 907–910

    Google Scholar 

  • Stevens, TO, Linkfield, TG & Tiedje, JM (1988) Physiological Characterization of Strain DCB-1, a Unique Sulfidogenic Bacterium. Appl. Environ. Microbiol. 54: 2938–2943

    Google Scholar 

  • Strubel, V, Rast, HG, Fietz, W, Knackmuss, H-J & Engesser, KH (1989) Enrichment of dibenzofuran utilizing bacteria with high co-metabolic potential towards dibenzodioxin and other anellated aromatics. FEMS Microbiol. Lett. 58: 233–238

    Google Scholar 

  • Suflita, JM, Robinson, JA & Tiedje, JM (1983) Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Appl. Environ. Microbiol. 45: 1466–1473

    Google Scholar 

  • Sylvestre, M, Mailhiot, K, Ahmad, D & Massé, R (1989) Isolation and preliminary characterization of a 2-chlorobenzoate degrading Pseudomonas. Can. J. Microbiol. 35: 439–443

    Google Scholar 

  • Sylvestre, M, Massé, R, Ayotte, C, Messier, F & Fauteux, J (1985) Total biodegradation of 4-chlorobiphenyl (4-CB) by a two-membered bacterial culture. Appl. Microbiol. Biotechnol. 21: 192–195

    Google Scholar 

  • Sylvestre, M, Massé, R, Messier, F, Fauteux, J, Bisaillon, J-G & Beaudet, R (1982) Bacterial nitration of 4-chlorobiphenyl. Appl. Environ. Microbiol. 44: 871–877

    Google Scholar 

  • Thiele, J, Müller, R & Lingens, F (1987) Initial characterization of 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3. FEMS Microbiol. Lett. 41: 115–119

    Google Scholar 

  • (1988a) Enzymatic dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 in organic solvents. Appl. Microbiol. Biotechnol. 27: 577–580

    Google Scholar 

  • (1988b) Enzymatic dehalogenation of chlorinated nitroaromatic compounds. Appl. Environ. Microbiol. 54: 1199–1202

    Google Scholar 

  • Tiedje, JM & Alexander, M (1969) Enzymatic Cleavage of the Ether Bond of 2,4-Dichlorophenoxyacetate. J. Agric. food Chem. 17: 1080–1084

    Google Scholar 

  • van den Tweel, WJJ, Ter Burg, N, Kok, JB & De Bont, JAM (1986) Bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by Alcaligenes denitrificans NTB-1. Appl. Microbiol. Biotechnol. 25: 289–294

    Google Scholar 

  • van den Tweel, WJJ, Kok, JB & De Bont, JAM (1987) Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl. Environ. Microbiol. 53: 810–815

    Google Scholar 

  • Unterman, R, Bedard, DL, Brennan, MJ, Bopp, LH, Mondello, FJ, Brooks, RE, Mobley, DP, McDermott, JB, Schwartz, CC & Dietrich, DK (1988) Biological approaches for polychlorinated biphenyl degradation. Basic Life Sciences 45: 253–269

    Google Scholar 

  • Vora, KA, Singh, C & Modi, VV (1988) Degradation of 2-fluorobenzoate by a Pseudomonad. Curr. Microbiol. 17: 249–254

    Google Scholar 

  • Walia, S, Tewari, R, Brieger, G, Thimm, V & McGuie, T (1988) Biochemical and genetic characterization of soil bacteria degrading polychlorinated biphenyl. In: Abbou, R (Ed) Hazardous Waste: Detection Control Treatment (pp 1621–1632). Elsevier Amsterdam

    Google Scholar 

  • Walker, N & Harris, D (1970) Metabolism of 3-chlorobenzoic acid by Azotobacter species. Soil Biol. Biochem. 2: 27–32

    Google Scholar 

  • Watanabe, I (1973) Isolation of pentachlorophenol decomposing bacteria from soil. Soil Sci. Plant Nutr. 19: 109–116

    Google Scholar 

  • Wyndham, RC & Straus, NA (1988a) Chlorobenzoate catabolism and interaction between Alcaligenes and Pseudomonas species from Bloody Run Creek. Arch. Microbiol. 150: 230–236

    Google Scholar 

  • Wyndham, RC, Singh, RK & Straus, NA (1988b) Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch. Microbiol. 150: 237–243

    Google Scholar 

  • You, I-S & Bartha, R (1982) Cometabolism of 3,4-dichloroaniline by Pseudomonas putida. J. Agric. Food Chem. 30: 274–277

    Google Scholar 

  • Zeyer, J & Kearney, PC (1982a) Microbial degradation of parachloroaniline as sole carbon and nitrogen source. Pesticide Biochem. Physiol. 17: 215–223

    Google Scholar 

  • (1982b) Microbial metabolism of propanil and 3,4-dichloroaniline. Pesticide Biochem. Physiol. 224: 231-biodegradation

    Google Scholar 

  • Zeyer, J, Wasserfallen, A & Timmis, KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl. Environ. Microbiol. 50: 447–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Commandeur, L.C.M., Parsons, J.R. Degradation of halogenated aromatic compounds. Biodegradation 1, 207–220 (1990). https://doi.org/10.1007/BF00058837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058837

Key words

Navigation