Skip to main content
Log in

On shells of revolution with the Love-Kirchhoff hypotheses

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

On the occasion of the 100th anniversary of A.E.H. Love's fundamental paper on thin elastic shell theory, the present article summarizes a line of developments on shells of revolution related to the Love-Kirchhoff hypotheses which form the basis of Love's theory. The summary begins with the Günther-Reissner formulation of the linear theory which is shown to contain the classical first approximation shell theory as a special case. The static-geometric duality is deduced as a natural and immediate consequence of the more general theory. The repeated applications of this duality greatly simplify the solution process for boundary-value problems in shell theory, including the classical reduction of the axisymmetric bending problem and related recent reductions of shell equations for more general loadings to two simultaneous equations for a stress function and a displacement variable. In the nonlinear range, the article confines itself to Reissner's geometrically nonlinear theory of axisymmetric deformation of shells of revolution and Marguerre's shallow shell theory with special emphasis on recent results for elastic membranes, buckling of shells of revolution and applications of asymptotic methods.

With fondness and appreciation, the authors dedicate this article to their teacher, collaborator and friend, Professor Eric Reissner, in the year of his seventy-fifth anniversary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aron: Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale, J. Reine u. Angew. Math. 78 (1874) 136–174.

    Google Scholar 

  2. J.G. Berry: On thin hemispherical shells subjected to concentrated edge moments and forces, Proc. 2nd Midwest. Conf. on Solid Mech. (1955) 25–44.

  3. C.B. Biezeno: Über die Bestimmnng der Durchschlagskraft einer schwachgekrümmten kreisförmigen Platte, ZAMM 15 (1935) 10–22.

    Google Scholar 

  4. E. Bromberg: Non-linear bending of a circular plate under normal pressure, Comm. Pure Appl. Math. 94 (1956) 633–659.

    Google Scholar 

  5. E. Bromberg and J.J. Stoker: Non-linear theory of curved elastic sheets, Quart. Appl. Math. 3 (1945) 246–265.

    Google Scholar 

  6. B. Budiansky: Buckling of clamped shallow spherical shells, The Theory of Thin Elastic Shells (Proc. IUTAM Shell Symp., Delft, 1959; W. T. Koiter, ed.), North-Holland, Amsterdam (1960) 64–94.

  7. B. Budiansky and J.L. Sanders, Jr.: On the best first order linear shell theory, Progress in Applied Mechanics (The Prager Anniversary Volume; D. Drucker, ed.), Macmillan (1963) 129–140.

  8. R. Byrne, Jr.: Theory of small deformations of the thin elastic shells, Univ. Calif. Publ. in Math., New Series, 2 (1944) 103–152.

    Google Scholar 

  9. C.R. Calladine: The theory of thin shell structures 1888–1988 (Love Centenary Lecture), Proc. Inst. Mech. Engrs. 202 (1988) 1–9.

    Google Scholar 

  10. A.J. Callegari and E.L. Reiss: Nonlinear boundary value problems for the circular membrane, Arch. Rat. Mech. Anal. 31 (1968) 390–400.

    Google Scholar 

  11. A.J. Callegari, H.B. Keller, and E.L. Reiss: Membrane buckling: a study of solution multiplicity, Comm. Pure Appl. Math. 24 (1971) 499–521.

    Google Scholar 

  12. A.L. Cauchy: Sur les équations qui expriment les conditions d'équilibre ou les lois de mouvement interieur d'un corps solide, Exercises de Mathématique (ed. Cauchy), Paris Academy (1828).

  13. L.S. Cheo and E.L. Reiss: Unsymmetric wrinkling of circular plates, Quart. Appl. Math. 31 (1973) 75–91.

    Google Scholar 

  14. V.S. Chernina: On the system of differential equations of equilibrium of shells of revolution under bending loads, Prik. Mat. Mek. (PMM) 23 (1959) 258–265.

    Google Scholar 

  15. W.Z. Chien: Asymptotic behavior of a thin clamped circular plate under uniform normal pressure at very large deflection, National Tsing Hua Univ. Sci. Repts. 5 (1948) 71–94.

    Google Scholar 

  16. R.A. Clark: On the theory of thin elastic toroidal shells, J. Math. & Phys. 24 (1950) 146–178.

    Google Scholar 

  17. R.A. Clark and O.S. Narayanaswamy: Nonlinear membrane problems for elastic shells of revolution, Proc. Sympos. Theory of Shells (L.H. Donnell Anniversary Volume; D. Muster, ed.), Univ. of Houston Press, Houston (1967) 80–110.

    Google Scholar 

  18. E. Cosserat and F. Cosserat: Théories des Corps Déformables, Hermann, Paris (1909).

    Google Scholar 

  19. R. W. Dickey: The plane circular elastic surface under normal pressure, Arch. Rat. Mech. Anal. 26 (1967) 219–236.

    Google Scholar 

  20. R. W. Dickey: Nonlinear bending of circular plates, SIAM J. Appl. Math. 30 (1976) 1–9.

    Google Scholar 

  21. L.H. Donnell: Stability of thin-walled tubes under torsion, NACA Tech. Rep. No. 479 (1933).

  22. L.H. Donell: A new theory for the buckling of thin cylinders under axial compression and bending, Trans. ASME 56 (1934) 795–806.

    Google Scholar 

  23. M. Drmota, R. Scheidl, H. Troger and E. Weinmüller: On the imperfection sensitivity of complete spherical shells, Comput. Mechanics 2 (1987) 63–74.

    Google Scholar 

  24. Z. Elias: Civil Engineering, Ph.D. Dissertation, MIT, Cambridge, MA (1962).

    Google Scholar 

  25. W. Flügge: Die Stabilität der Kreiszylinderschale, Ing.-Arch. 3 (1932) 463–506.

    Google Scholar 

  26. A. Föppl: Vorlesungen über Technische Mechanik, Vol. 5, R. Oldenbourg, München (1907).

    Google Scholar 

  27. J.P. Frakes and J.G. Simmonds: Asymptotic solutions of the von Kármán equations for a circular plate under a concentrated load, J. Appl. Mech. 52 (1985) 326–330.

    Google Scholar 

  28. K.O. Friedrichs and R.F. Dressler: A boundary layer theory for elastic bending of plates, Comm. Pure Appl. Math. 14 (1961) 1–33.

    Google Scholar 

  29. K.O. Friedrichs and J.J. Stoker: The nonlinear boundary value problem of the buckled plate, Am. J. Math. 63 (1941) 839–888.

    Google Scholar 

  30. A.L. Goldenveizer: The equations of the theory of thin shells, Prik. Mat. Mek. (PMM) 4 (1940) 32–42.

    Google Scholar 

  31. A.L. Goldenveizer: Equations of the theory of shells in displacement and stress functions, Prik. Mat. Mek. (PMM) 21 (1957) 801–814.

    Google Scholar 

  32. A.L. Goldenveizer: Theory of Thin Elastic Shells, Pergamon Press (1961).

  33. H. Grabmüller and E. Novak: Nonlinear boundary value problems for the annular membrane: a note on uniqueness of positive solutions, J. Elasticity 17 (1987) 279–284.

    Google Scholar 

  34. H. Grabmüller and E. Novak: Nonlinear boundary value problems for the annular membrane: New results on existence of positive solutions, Math. Meth. Appl. Sci. 10 (1988) 37–49.

    Google Scholar 

  35. H. Grabmüller and R. Pirner: Positive solutions of annular elastic membrane problems with finite rotations, Studies in Appl. Math. 77 (1987) 223–252.

    Google Scholar 

  36. H. Grabmüller and R. Pirner: Existence theorems for some boundary value problems in the nonlinear theory of annular elastic membranes, Report 128, Oct. 1987, Inst. Angew. Math., Univ. Erlangen (to appear, 1988).

  37. H. Grabmüller and H.J. Weinitschke: Finite displacements of annular elastic membranes, J. Elasticity 16 (1986) 135–147.

    Google Scholar 

  38. M. Gräff, R. Scheidl, H. Troger and E. Weinmüller: An investigation of the complete post-buckling behavior of axisymmetric spherical shells, ZAMP 36 (1985) 803–821.

    Google Scholar 

  39. R.D. Gregory: A note on multiple asymptotic series, S.I.A.M. J. Math. Anal. 11 (1980) 115–118.

    Google Scholar 

  40. R.D. Gregory and F.Y.M. Wan: Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory, J. Elasticity 14 (1984) 27–64.

    Google Scholar 

  41. R.D. Gregory and F.Y.M. Wan: On plate theories and Saint-Venant's principle, Int. J. Solids & Structures 21 (1985) 1005–1024.

    Google Scholar 

  42. R.D. Gregory and F.Y.M. Wan: Edge effect in the stretching of plates, Local Effects in the Analysis of Structures, ed. P. Ladevèze, Elsevier Science Publishers B.V., Amsterdam (1985) 35–54.

    Google Scholar 

  43. R.D. Gregory and F.Y.M. Wan: On the interior solution for linear elastic plates, J. Appl. Mech. (to appear, 1988).

  44. R.D. Gregory and F.Y.M. Wan: Edge data for cylindrical shells and the foundations of shell theory, Proc. ASME Symp. on Anal. & Comp. Models for Shells(ed. A.K. Noor), to appear (1989).

  45. W. Günther: Analoge Systeme von Schalen-Gleichungen, Ing.-Arch. 30 (1961) 160–186.

    Google Scholar 

  46. A. Havers: Asymptotische Biegetheorie der unbelasteten Kugelschale, Ing. Arch. 6 (1935) 282–312.

    Google Scholar 

  47. H. Hencky: Über den Spannungszustand in kreisrunden Platten, Z. Math. Phys. 63 (1915) 311–317.

    Google Scholar 

  48. F.B. Hildebrand: Asymptotic integration in shell theory, Proc. Symp. Appl. Math., Vol. III, McGraw-Hill (1950) 53–66.

  49. F.B. Hildebrand, E. Reissner and G.B. Thomas: “Notes on the foundations of the theory of small displacements of orthotropic shells”, NACA Techn. Notes No. 1833 (March, 1949).

  50. N.C. Huang: Unsymmetrical buckling of thin spherical shells, J. Appl. Mech. 31 (1964) 447–457.

    Google Scholar 

  51. J.W. Hutchinson: Imperfection sensitivity of externally pressurized spherical shells, J. Appl. Mech. 34 (1967) 49–55.

    Google Scholar 

  52. M.W. Johnson: A boundary layer theory of unsymmetric deformations of circular cylindrical elastic shells, J. Math. & Phys. 42 (1963) 167–187.

    Google Scholar 

  53. M.W. Johnson and E. Reissner: On the foundations of the theory of thin elastic shells, J. Math. & Phys. 37 (1958) 375–392.

    Google Scholar 

  54. R. Kao and N. Perrone: Large deflections of axisymmetric circular membranes, Int. J. Solids & Structures 7 (1971) 1601–1612.

    Google Scholar 

  55. A. Kaplan: Buckling of spherical shells, Thin Shell Structures (The Sechler Anniversary Volume; Y.C. Fung, ed.), Prentice-Hall, Englewood Cliffs, N.J. (1974) 247–288.

    Google Scholar 

  56. H.B. Keller, J.B. Keller and E.L. Reiss: Buckled states of circular plates, Quart. Appl. Math. 20 (1962) 55–65.

    Google Scholar 

  57. H.B. Keller and E.L. Reiss: Iterative solutions for the nonlinear bending of circular plates, Comm. Pure Appl. Math. 11 (1958) 272–292.

    Google Scholar 

  58. G.R. Kirchhoff: Über das Gleichgewicht und Bewegungen einer elastischen Scheibe, J. Reine u. Angew. Math. 40 (1850) 51–88.

    Google Scholar 

  59. G.R. Kirchhoff: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, J. Reine u. Angew. Math. 56 (1859) 285–313. (also Vorlesungen über Math. Physik, Mechanik, 2nd. Ed., Leipzig (1877)).

    Google Scholar 

  60. W.T. Koiter: Over de stabiliteit van het elastisch evenwicht (On the stability of elastic equilibrium), Thesis, Delft (1945). (English translation as NASA TTF-10 (1967)).

  61. W.T. Koiter: A consistent first approximation in the general theory of thin elastic shells, Theory of Thin Elastic Shells (Proc. 1st IUTAM Symp. on Shells, Delft (1959); W.T. Koiter, ed.), North Holland (1960) 12–33.

  62. W.T. Koiter: Elastic stability and post-buckling behavior, Proc. Symp. Nonlinear Problems, Madison University of Wisconsin Press (1963) 257–275.

    Google Scholar 

  63. W.T. Koiter: A spherical shell under point loads at its poles, Progress in Applied Mechanics (The Prager A Anniversary Volume; D. Drucker, ed.), The Macmillan Co. (1963) 155–169.

  64. W.T. Koiter: On the nonlinear theory of thin elastic shells, Proc. Kon. Nederl. Akad. Wetensch. B69 (1966) 1–54.

    Google Scholar 

  65. W.T. Koiter: The nonlinear buckling problem of a complete spherical shell under external pressure, Proc. Kon. Nederl. Akad. Wetensch. B72 (1969) 40–123.

    Google Scholar 

  66. W.T. Koiter: The intrinsic equations of shell theory with some application, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat Nasser, ed.), Pergamon Press (1980) 139–154.

  67. W.T. Koiter and J.G. Simmonds: Foundations of shell theory, Proc. 13th Int. Cong. Theor. Appl. Mech., Moscow (1972), (E. Becker and G.K. Mikhailov, (eds.)), Springer-Verlag (1973) 150–176.

    Google Scholar 

  68. G.A. Kriegsmann and C.G. Lange: On large axisymmetrical deflection states of spherical shells, J. Elasticity 10 (1980) 179–192.

    Google Scholar 

  69. C.G. Lange and G.A. Kriegsmann: The axisymmetric branching behavior of complete spherical shells, Quart. Appl. Math. 39 (1981) 145–178.

    Google Scholar 

  70. M.L. Lecornu: Sur l'équilibre des surfaces flexibles et inextensibles, J. de l'Ecole Polytech. 29 (1880) 1–109.

    Google Scholar 

  71. R.W. Leonard: Nonlinear first approximation thin shell and membrane theory, NASA Tech. Report, NASA-Langley (1961).

  72. A. Libai and J.G. Simmonds: Nonlinear elastic shell theory, Advances in Applied Mechanics 23, Academic Press (1983) 271–371.

  73. A. Libai and J.G. Simmonds: The Nonlinear Theory of Elastic Shells: One Spatial Dimension, Academic Press Inc., Boston (1988).

    Google Scholar 

  74. Y.H. Lin and F.Y.M. Wan: Asymptotic solutions of steadily spinning shallow shells of revolution under uniform pressure, Int. J. Solids & Structures 21 (1985) 27–53.

    Google Scholar 

  75. Y.H. Lin and F.Y.M. Wan: Orthotropic semi-infinite cantilevered strips and the foundations of plate theories, Appl. Math. Tech. Rep. 87–96, Univ. of Washington, Seattle (July 1987; revised April, 1988).

    Google Scholar 

  76. Y.H. Lin and F.Y.M. Wan: Some canonical problems for orthotropic cylinders and the foundations of plate theories, Appl. Math. Tech. Rep. 88–5, University of Washington, Seattle (July, 1988).

    Google Scholar 

  77. A.E.H. Love: On the small free vibrations and deformation of thin elastic shells, Phil. Trans. Roy. Soc. A179 (1888) 491–546.

    Google Scholar 

  78. A.E.H. Love: A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Dover (1944) (1st Ed., 1893).

  79. A.I. Lurje: General theory of thin elastic shells, Prik. Mat. Mek. (PMM) 4 (1940) 7–34.

    Google Scholar 

  80. R.L. Mallet and F.Y.M. Wan: The static-geometric duality and a staggered mesh difference scheme for some shell problems, Studies in Appl. Math. 52 (1973) 21–38.

    Google Scholar 

  81. K. Marguerre: Zur Theorie der gekrümmten Platte grosser Formänderung, Proc. 5th Intern. Congr. Appl. Mech. (1938) 93–101.

  82. E. Meissner: Das Elastizitätsproblem für dünne Schalen von Ringflächen-, Kugel- und Kegelform, Phys. Z. 14 (1913) 343–349.

    Google Scholar 

  83. P.M. Naghdi: The effect of transverse shear deformation on the bending of elastic shells of revolution, Quart. Appl. Math. 15 (1957) 41–52.

    Google Scholar 

  84. P.M. Naghdi: Foundations of elastic shell theory, Progr. in Solid Mech., Vol. IV (I. Sneddon and R. Hill, ed.), North-Holland (1963) 1–90.

  85. P.M. Naghdi and R.P. Nordgren: On the nonlinear theory of elastic shells under the Kirchhoff hypothesis, Quart. Appl. Math. 21 (1963) 49–59.

    Google Scholar 

  86. E. Novak: On convergence of interpolated iterations: An application to nonlinear plate bending, SIAM J. Math. Anal. (in print, 1988).

  87. D.F. Parker and F.Y.M. Wan: Finite polar dimpling of shallow caps under sub-buckling axisymmetric pressure distribution, SIAM J. Appl. Math. 44 (1984) 301–326.

    Google Scholar 

  88. Lord Rayleigh (J.W. Strutt): On the infinitesimal bending of surfaces of revolution, London Math. Soc. Proc. 13 (1881) 4–16.

    Google Scholar 

  89. E.L. Reiss: A uniqueness theorem for the nonlinear axisymmetric bending of circular plates, AIAA Journal 1 (1963) 2650–2652.

    Google Scholar 

  90. E. Reissner: On the theory of thin elastic shells, Contributions to Appl. Mech. (H. Reissner Anniversary Volume), J.W. Edwards, Ann Arbor, MI (1949) 231–247.

    Google Scholar 

  91. E. Reissner: On axisymmetrical deformations of thin shells of revolution, Proc. Symp. Appl. Math., Vol. III, McGraw-Hill (1950) 27–52.

    Google Scholar 

  92. E. Reissner: The edge effect in symmetric bending of shallow shells of revolution, Comm. Pure Appl. Math. 12 (1959) 385–398.

    Google Scholar 

  93. E. Reissner: On torsion of thin cylindrical shells, J. Mech. Phys. Solids 7 (1959) 157–162.

    Google Scholar 

  94. E. Reissner: Variational considerations for elastic beams and shells, Proc. ASCE (EM) 8 (1962) 23–57.

    Google Scholar 

  95. E. Reissner: On the equations for finite symmetrical deflections of thin shells of revolution, Progress in Mechanics (Prager Anniversary Volume; D.C. Drucker, (ed.)), Macmillan, New York (1963) 171–178.

    Google Scholar 

  96. E. Reissner: On the foundations of generalized linear shell theory, Proc. 2nd IUTAM Symp. on Thin Shells (1967), F. Niordson, ed., Springer-Verlag (1969) 15–30.

  97. E. Reissner: On finite symmetrical deflections of thin shells of revolution, J. Appl. Mech. 36 (1969) 267–270.

    Google Scholar 

  98. E. Reissner: On the derivation of two-dimensional shell equations from three-dimensional elasticity theory, Studies in Appl. Math. 49 (1970) 205–224.

    Google Scholar 

  99. E. Reissner: On consistent first approximations in the general linear theory of thin elastic shells, Ing.-Arch. 40 (1971) 402–419.

    Google Scholar 

  100. E. Reissner: Linear and nonlinear theories of thin elastic shells, Thin Shell Structures (The E. Sechler Volume; Y.C. Fung, ed.), Prentice Hall (1974) 29–44.

  101. E. Reissner: On finite axisymmetrical deformations of thin elastic shells of revolution, Comput. Mechanics (to appear).

  102. E. Reissner and F.Y.M. Wan: Rotating shallow elastic shells of revolution, J. Soc. Ind. Appl. Math. 13 (1965) 333–352.

    Google Scholar 

  103. E. Reissner and F.Y.M. Wan: A note on the stress strain relations of the linear theory of shells, ZAMP 17 (1966) 676–681.

    Google Scholar 

  104. E. Reissner and F.Y.M. Wan: On stress strain relations and strain displacement relations of the linear theory of shells, Recent Progress in Applied Mechanics (The Folke Odqvist Volume), Almqvist & Wiksell (Stockholm), (1967) 487–500.

    Google Scholar 

  105. E. Reissner and F.Y.M. Wan: Rotationally symmetric stress and strain in shells of revolution, Studies in Appl. Math. 48 (1969) 1–17.

    Google Scholar 

  106. H. Reissner: Spannungen in Kugelschalen (Kuppeln), Muller-Breslau Festschrift (dy1912) 181–193.

  107. P. Rentrop: Eine Taylorreihen-Methode zur Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie, TUM, Inst. f. Mathematik, München (1977).

  108. J.L. Sanders, Jr.: Nonlinear theories for thin shells, Quart. Appl. Math. 21 (1963) 21–36.

    Google Scholar 

  109. H. Schaefer: Die Analogie zwischen den Verschiebungen und den Spannungsfunktionen in der Biegetheorie der Kreiszylinderschale, Ing.-Arch. 29 (1960) 125–133.

    Google Scholar 

  110. E. Schwerin: Uber Spannungen und Formänderungen kreisringförmiger Membranen, Z. tech. Phys. 12 (1929) 651–659.

    Google Scholar 

  111. E. Schwerin: Über Spannungen in symmetrisch und unsymmetrisch belasteten Kugelschalen (Kuppeln) insbesondere bei Belastung durch Winddruck, Armierter Beton 12 (1919) 25–37, 54–63.

    Google Scholar 

  112. W.J. Seaman and F.Y.M. Wan: Lateral bending and twisting of toroidal shells, Studies in Appl. Math. 53 (1974) 73–89.

    Google Scholar 

  113. J.G. Simmonds: A set of simple, accurate equations for circular cylindrical elastic shells, Int. J. Solids & Structures 2 (1966) 525–541.

    Google Scholar 

  114. J.G. Simmonds: Green's function for closed elastic spherical shells; Exact and accurate approximate solutions, Proc. Kon. Nederl. Akad. Wetensch. B71 (1968) 236–249.

    Google Scholar 

  115. J.G. Simmonds: Rigorous expunction of Poisson's ratio from the Reissner-Meissner equations, Int. J. Solids & Structures 11 (1975) 1051–1056.

    Google Scholar 

  116. J.G. Simmonds and D.A. Danielson: Nonlinear shell theory with a finite rotation vector, Proc. Kon. Nederl. Akad. Wetensch. 73 (1970) 460–478.

    Google Scholar 

  117. J.G. Simmonds and D.A. Danielson: Nonlinearshell theory with finite rotation and stress-function vectors, J. Appl. Mech. 39 (1972) 1084–1090.

    Google Scholar 

  118. J.G. Simmonds and A. Libai: Asymptotic forms of a simplified version of the nonlinear Reissner equations for clamped elastic spherical caps under outward pressure, Comput. Mechanics 2 (1987) 231–224.

    Google Scholar 

  119. R.M. Simons: A power series solution of the nonlinear equations for axisymmetrical bending of shallow spherical shells, J. Math. & Phys. 35 (1956) 164–176.

    Google Scholar 

  120. H.S. Tsien: A theory for the buckling of thin shells, J. Aero. Sci. 9 (1942) 373–384.

    Google Scholar 

  121. A. van der Neut: De elastische stabiliteit van de dunwandigen bol, Thesis, Delft (1932).

  122. Th. von Kármán: Festigkeitsprobleme im Maschinenbau, Encyklopädie der Mathematischen Wissenschaften, Vol. 4/4 (1910) 311–385.

    Google Scholar 

  123. Th. von Kármán and H.S. Tsien: The buckling of spherical shells by external pressure, J. Aero. Sci. 7 (1939) 43–50.

    Google Scholar 

  124. Th. von Kármán and H.S. Tsien: The buckling of thin cylindrical shells under axial compression, J. Aero. Sci. 8 (1941) 303–312.

    Google Scholar 

  125. N. Wagner: Existence theorem for a nonlinear boundary value problem in ordinary differential equations, Contrib. Diff. Eq. 3 (1965) 325–336.

    Google Scholar 

  126. F.Y.M. Wan: Two variational theorems for thin shells, J. Math. & Phys. 47 (1968) 429–431.

    Google Scholar 

  127. F.Y.M. Wan: On the displacement boundary value problem of shallow spherical shells, Int. J. Solids & Structures 4 (1968) 661–666.

    Google Scholar 

  128. F.Y.M. Wan: The side force problem for shallow helicoidal shells, J. Appl. Mech. 36 (1969) 292–295.

    Google Scholar 

  129. F.Y.M. Wan: Exact reductions of the equations of linear theory of shells of revolution, Studies in Appl. Math. 48 (1969) 361–375.

    Google Scholar 

  130. F.Y.M. Wan: Rotationally symmetric shearing and bending of helicoidal shells, Studies in Appl. Math. 48 (1970) 351–369.

    Google Scholar 

  131. F.Y.M. Wan: Circumferentially sinusoidal stress and strain in shells of revolution, Int. J. Solids & Structures 4 (1970) 959–973.

    Google Scholar 

  132. F.Y.M. Wan: On the equations of the linear theory of elastic conical shells, Studies in Appl. Math. 49 (1970) 69–83.

    Google Scholar 

  133. F.Y.M. Wan: Laterally loaded shells of revolution, Ing.-Arch. 42 (1973) 245–258.

    Google Scholar 

  134. F.Y.M. Wan: The dimpling of spherical caps, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat-Nasser, ed.), Pergamon Press (1980) 495–508.

  135. F.Y.M. Wan: Polar dimpling of complete spherical shells, Theory of Shells (Proc. 3rd IUTAM Shell Symp., Tbilisi (1978); W.T. Koiter and G.K. Mikhailov, ed.), North Holland (1980) 191–207.

  136. F.Y.M. Wan: Shallow caps with a localized axisymmetric load distribution, Flexible Shells. (Proc. EUROMECH Colloq. No. 165; E.L. Axelrad and F.A. Emmerling, eds.), Springer-Verlag (1984) 124–145.

  137. F.Y.M. Wan: Lecture notes on the linear theory of shells of revolution, Appl. Math. Tech. Report 84-89, University of British Columbia (1984).

  138. F.Y.M. Wan and H.J. Weinitschke: Boundary layer solutions for some nonlinear elastic membrane problems, ZAMP 38 (1987) 79–91.

    Google Scholar 

  139. S. Way: Bending of circular plates with large deflection, Trans. A.S.M.E. 56 (1934) 627–636.

    Google Scholar 

  140. H.J. Weinitschke: On the stability problem for shallow spherical shells, J. Math. & Phys. 38 (1960) 209–231.

    Google Scholar 

  141. H.J. Weinitschke: On asymmetric buckling of shallow spherical shells, J. Math. & Phys. 44 (1965) 141–163.

    Google Scholar 

  142. H.J. Weinitschke: Zur mathematischen Theorie der endlichen Verbiegung elastischer Platten, Habilitationsschrift, Universität Hamburg (1965).

  143. H.J. Weinitschke: Existenz-und Eindeutigkeitssätze für die Gleichungen der kreisförmigen Membran, Meth. u Verf. d. Math. Physik 3 (1970) 117–139.

    Google Scholar 

  144. H.J. Weinitschke: On axisymmetric deformations of nonlinear elastic membranes, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat-Nasser, ed.), Pergamon Press (1980) 523–542.

  145. H.J. Weinitschke: On the calculation of limit and bifurcation points of stability problems in elastic shells, Int. J. Solids & Structures 21 (1985) 79–95.

    Google Scholar 

  146. H.J. Weinitschke: On finite displacements of circular elastic membranes, Math. Meth. Appl. Sci. 9 (1987) 76–98.

    Google Scholar 

  147. H.J. Weinitschke: On uniqueness of axisymmetric deformations of elastic plates and shells, SIAM J. Math. Anal. 18 (1988) 680–692.

    Google Scholar 

  148. H.J. Weinitschke: Stable and unstable membrane solutions for shells of revolutions, to appear in Proc. Pan Amer. Congr. Appl. Mech. (PACAM, Rio de Janeiro (1989); A Leissa, ed.).

  149. H.J. Weinitschke and C.G. Lange: Asymptotic solutions for finite deformation of thin shells of revolution with a small circular hole, Quart. Appl. Math. 45 (1987) 401–417.

    Google Scholar 

  150. E. Weinmüller: On the boundary value problem for systems of ordinary second order differential equations with a singularity of the first kind, SIAM J. Math. Anal. 15 (1984) 287–307.

    Google Scholar 

  151. J.H. Wolkowisky: Existence of buckled states of circular plates, Comm. Pure Appl. Math. 20 (1967) 549–560.

    Google Scholar 

  152. M. Yanowitch: Nonlinear buckling of circular clamped plates, Comm. Pure Appl. Math. 9 (1956) 661–672.

    Google Scholar 

  153. R. Zoelly: Über ein Knickproblem an der Kugelschale, Thesis, Zürich (1915).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedication

The preparation of this paper has been supported in part by NSF Grant No. DMS-8743445.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, F.Y.M., Weinitschke, H.J. On shells of revolution with the Love-Kirchhoff hypotheses. J Eng Math 22, 285–334 (1988). https://doi.org/10.1007/BF00058512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058512

Keywords

Navigation