Skip to main content
Log in

Intermediate filaments in the nervous system: implications in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

In this review, we describe the different intermediate filament (IF) proteins, their assembly into IFs, the functions of IFs and their relation to disease with a particular emphasis on the intermediate filaments expressed in the nervous system. In the mammalian nervous system, seven intermediate filament proteins are known to be expressed in neurons or neuroblasts. These include the three neurofilament triplet proteins, which are present in both central and peripheral neurons; α-internexin, which is the first neuronal intermediate filament protein expressed in the developing mammalian nervous system and present primarily in CNS neurons in the adult nervous system; peripherin, which is most abundant in the PNS; vimentin, which is expressed in neuronal progenitor cells along with nestin, as well as in a few adult neurons. In contrast to these neuron-specific IF proteins, the glial fibrillary acidic protein (GFAP) is glial specific and expressed in mature astrocytes. Vimentin and nestin are also expressed in glial progenitor cells and vimentin is expressed along with GFAP in some mature astrocytes. As a whole, the expression of IF proteins is tissue specific and developmentally regulated. As a result, IF proteins are good markers for determining the cell origin and differentiation status of tumor cells. For example, peripherin is expressed in neuroblastomas, GFAP in astrocytomas and neurofilaments in tumors of neuronal origin. However, tumor cells may express IF patterns which are irrelevant to their cell origin. Therefore, one has to be very careful in using IF patterns as sole indicators of cell origin and differentiation status of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ishikawa H, Bischoff R, Holtzer H: Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol 38: 538–555, 1968

    Google Scholar 

  2. Sarria AJ, Nordeen SK, Evans RM: Regulated expression of vimentin cDNA in cells in the presence and absence of a preexisting vimentin filament network. J Cell Biol 111: 553–565, 1990

    Google Scholar 

  3. Geisler N, Weber K: The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J 1: 1649–1656, 1982

    Google Scholar 

  4. Steinert PM, Steven AC, Roop DR: The molecular biology of intermediate filaments. Cell 42: 411–420, 1985

    Google Scholar 

  5. Bader BL, Magin TM, Hatzfeld M, Franke WW: Amino acid sequence and gene organization of cytokeratin no. 19, an exceptional tail-less intermediate filament protein. Embo J 5: 1865–1875, 1986

    Google Scholar 

  6. Merdes A, Gounari F, Georgatos SD: The 47-kD lens-specific protein phakinin is a tailless intermediate filament protein and an assembly partner of filensin. J Cell Biol 123: 1507–1516, 1993

    Google Scholar 

  7. Ho CL, Chin SS, Carnevale K, Liem RK: Translation initiation and assembly of peripherin in cultured cells. Eur J Cell Biol 68: 103–112, 1995

    Google Scholar 

  8. Chen WJ, Liem RK: The endless story of the glial fibrillary acidic protein. J Cell Sci 107: 2299–2311, 1994

    Google Scholar 

  9. Ching GY, Liem RK: Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol 122: 1323–1335, 1993

    Google Scholar 

  10. Merdes A, Brunkener M, Horstmann H, Georgatos SD: Filensin: a new vimentin-binding, polymerization-competent, and membrane-associated protein of the lens fiber cell. J Cell Biol 115: 397–410, 1991

    Google Scholar 

  11. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R: The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24, 1982

    Google Scholar 

  12. Eichner R, Sun TT, Aebi U: The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments. J Cell Biol 102: 1767–1777, 1986

    Google Scholar 

  13. Steinert PM: The two-chain coiled-coil molecule of native epidermal keratin intermediate filaments is a type I-type II heterodimer. J Biol Chem 265: 8766–8774, 1990

    Google Scholar 

  14. Lee MK, Xu Z, Wong PC, Cleveland DW: Neurofilaments are obligate heteropolymersin vivo. J Cell Biol 122: 1337–1350, 1993

    Google Scholar 

  15. Leung CL, Liem RKH: Characterization of interactions between the neurofilament triplet proteins by the yeast two-hybrid system. J Biol Chem 271: 14041–14044, 1996

    Google Scholar 

  16. Albers K, Fuchs E: The molecular biology of intermediate filament proteins. Intern Rev Cytol 134: 243–279, 1992

    Google Scholar 

  17. Okabe S, Miyasaka H, Hirokawa N: Dynamics of the neuronal intermediate filaments. J Cell Biol 121: 375–386, 1993

    Google Scholar 

  18. Angelides KJ, Smith KE, Takeda M: Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures. J Cell Biol 108: 1495–1506, 1989

    Google Scholar 

  19. Chin SS, Liem RK: Transfected rat high-molecular-weight neurofilament (NF-H) coassembles with vimentin in a predominantly nonphosphorylated form. J Neurosci 10: 3714–3726, 1990

    Google Scholar 

  20. Parysek LM, McReynolds MA, Goldman RD, Ley CA: Some neural intermediate filaments contain both peripherin and the neurofilament proteins. J Neurosci Res 30: 80–91, 1991

    Google Scholar 

  21. Fliegner KH, Kaplan MP, Wood TL, Pintar JE, Liem RK: Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J Comp Neurol 342: 161–173, 1994

    Google Scholar 

  22. Kaplan MP, Chin SS, Fliegner KH, Liem RK: Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 10: 2735–2748, 1990

    Google Scholar 

  23. McLean WH, Lane EB: Intermediate filaments in disease. Curr Opin Cell Biol 7: 118–125, 1995

    Google Scholar 

  24. Kachinsky AM, Dominov JA, Miller JB: Myogenesis and the intermediate filament protein, nestin. Dev Biol 165: 216–228, 1994

    Google Scholar 

  25. Kachinsky AM, Dominov JA, Miller JB: Intermediate filaments in cardiac myogenesis: nestin in the developing mouse heart. J Histochem Cytochem 43: 843–847, 1995

    Google Scholar 

  26. Chien CL, Liem RKH: The neuronal intermediate filament, α-internexin is transiently expressed in amacrine cells in the developing mouse retina. Exp Eye Res 61: 749–756, 1995

    Google Scholar 

  27. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C: Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79: 679–694, 1994

    Google Scholar 

  28. Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S: Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14: 29–41, 1995

    Google Scholar 

  29. Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C: Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14: 1590–1598, 1995

    Google Scholar 

  30. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson R, Itohara S: Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16: 587–599, 1996

    Google Scholar 

  31. Fuchs E: Intermediate filaments and disease: mutations that cripple cell strength. J Cell Biol 125: 511–516, 1994

    Google Scholar 

  32. Ohara O, Gahara Y, Miyake T, Teraoka H, Kitamura T: Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J Cell Biol 121: 387–395, 1993

    Google Scholar 

  33. Xu Z, Marszalek JR, Lee MK, Wong PC, Folmer J, Crawford TWO, Hsieh S-T, Griffin JW, Cleveland DW: Subunit composition of neurofilaments specifies axonal diameter. J Cell Biol 133: 1061–1069, 1996

    Google Scholar 

  34. de Waegh SM, Lee VM, Brady ST: Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68: 451–463, 1992

    Google Scholar 

  35. Sun D, Leung CL, Liem RKH: Phosphorylation of the high molecular weight neurofilament protein (NF-H) by cdk5 and p35. J Biol Chem 271: 14245–14251, 1996

    Google Scholar 

  36. Cote F, Collard JF, Julien JP: Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73: 35–46, 1993

    Google Scholar 

  37. Cleveland DW: Neuronal growth and death: order and disorder in the axoplasm. Cell 84: 663–666, 1996

    Google Scholar 

  38. Jensen K, Gluud C: The Mallory body: morphological, clinical and experimental studies (Part 1 of a literature survey). Hepatology 20: 1061–1077, 1994

    Google Scholar 

  39. Schochet SSJr, McCormick WF: Ultrastructure of Hirano bodies. Acta Neuropathol 21: 50–60, 1972

    Google Scholar 

  40. Hill WD, Lee VM, Hurtig HI, Murray JM, Trojanowski JQ: Epitopes located in spatially separate domains of each neurofilament subunit are present in Parkinson's disease Lewy bodies. J Comp Neurol 309: 150–160, 1991

    Google Scholar 

  41. Haas JE, Palmer NF, Weinberg AG, Beckwith JB: Ultrastructure of malignant rhabdoid tumor of the kidney. A distinctive renal tumor of children. Human Pathol 12: 646–657, 1981

    Google Scholar 

  42. Leong AS, Phillips GE, Pieterse AS, Milios J: Criteria for the diagnosis of primary endocrine carcinoma of the skin (Merkel cell carcinoma). A histological, immunohistochemical and ultrastructural study of 13 cases [published erratum appears in Pathology 1987 Jan; 19(1): 27]. Pathol 18: 393–399, 1986

    Google Scholar 

  43. Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J: Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals [see comments]. Amer J Surg Pathol 15: 499–513, 1991

    Google Scholar 

  44. Jacobson M: Developmental neurobiology. 3rd ed. Plenum Press, New York, 1991, pp 41–93

    Google Scholar 

  45. Jacobson M: Developmental neurobiology. 3rd ed. Plenum Press, New York, 1991, pp 143–162

    Google Scholar 

  46. Kasper M: Cytokeratins in intracranial and intraspinal tissues. Adv Anat Embryol Cell Biol 1992; 126: 1–82, 1992

    Google Scholar 

  47. Dahlstrand J, Lardelli M, Lendahl U: Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84: 109–129, 1995

    Google Scholar 

  48. Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ: Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 66: 303–313, 1992

    Google Scholar 

  49. Chien C-L, Mason CA, Liem RKH: α-internexin is the only neuronal intermediate filament expressed in developing cerebellar granule neurons. J Neurobiol 29: 304–318, 1996

    Google Scholar 

  50. Greene LA: A new neuronal intermediate filament protein. [Review]. Trends in Neurosciences 12: 228–230, 1989

    Google Scholar 

  51. Despres G, Leger GP, Dahl D, Romand R: Distribution of cytoskeletal proteins (neurofilaments, peripherin and MAP-tau) in the cochlea of the human fetus. Acta Oto Laryngologica 114: 377–381, 1994

    Google Scholar 

  52. Molenaar WM, Lee VM, Trojanowski JQ: Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin. A, synaptophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins. Exper Neurol 108: 1–9, 1990

    Google Scholar 

  53. Parysek LM, Chrisholm RL, Ley CA, Goldman RD: A type III intermediate filament gene is expressed in mature neurons. Neuron 1: 395–401, 1988

    Google Scholar 

  54. Holford LC, Case P, Lawson SN: Substance P, neurofilament, peripherin and SSEA4 immunocytochemistry of human dorsal root ganglion neurons obtained from post-mortem tissue: a quantitative morphometric analysis. J Neurocytol 23: 577–589, 1994

    Google Scholar 

  55. Eaker EY, Sallustio JE: The distribution of novel intermediate filament proteins defines subpopulations of myenteric neurons in rat intestine. Gastroenteroly 107: 666–674, 199

    Google Scholar 

  56. Krammer HJ, Karahan ST, Sigge W, Kuhnel W: Immunohistochemistry of markers of the enteric nervous system in whole-mount preparations of the human colon. Europ J Pediatr Surg 4: 274–278, 1994

    Google Scholar 

  57. Chevez P, Font RL: Practical applications of some antibodies labelling the human retina. Histol & Histopathol 8: 437–442, 1993

    Google Scholar 

  58. Drager UC: Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303: 169–172, 1983

    Google Scholar 

  59. Schwob JE, Farber NB, Gottlieb DI: Neurons of the olfactory epithelium in adult rats contain vimentin. J Neurosci 6: 208–217, 1986

    Google Scholar 

  60. Kasper M, Goertchen R, Stosiek P, Perry G, Karsten U: Coexistence of cytokeratin, vimentin and neurofilament protein in human choroid plexus. An immunohistochemical study of intermediate filaments in neuroepithelial tissues. Virchows Archiv A, Pathol Anat & Histopathol 410: 173–177, 1986

    Google Scholar 

  61. Dockhorn-Dworniczak B, Franke WW, Schroder S, Czernobilsky B, Gould VE, Bocker W: Patterns of expression of cytoskeletal proteins in human thyroid gland and thyroid carcinomas. Differentiation 35: 53–71, 1987

    Google Scholar 

  62. Schroder S, Bocker W, Baisch H, Burk CG, Arps H, Meiners I, Kastendieck H, Heitz PU, Kloppel G: Prognostic factors in medullary thyroid carcinomas. Survival in relation to age, sex, stage, histology, immunocytochemistry, and DNA content. Cancer 61: 806–816, 1988

    Google Scholar 

  63. Perez MA, Saul SH, Trojanowski JQ: Neurofilament and chromogranin expression in normal and neoplastic neuroendocrine cells of the human gastrointestinal tract and pancreas. Cancer 65: 1219–1227, 1990

    Google Scholar 

  64. Middendorff R, Davidoff MS, Mayer B, Holstein AF: Neuroendocrine characteristics of human Leydig cell tumours. Andrologia 27: 351–355, 1995

    Google Scholar 

  65. Lehto VP, Miettinen M, Virtanen I: A dual expression of cytokeratin and neurofilaments in bronchial carcinoid cells. Internat J Canc 35: 421–425, 1995

    Google Scholar 

  66. Gatter KC, Dunnill MS, Van Muijen GN, Mason DY: Human lung tumours may coexpress different classes of intermediate filaments. J Clin Pathol 39: 950–954, 1986

    Google Scholar 

  67. Ramaekers F, Broers J, Rot MK, Oostendorp T, Wagenaar S, Vooijs P: Detection of epithelial- and neural type of intermediate filament proteins in human lung tumors. Acta Histochemica-Supplementband 34: 45–56, 1987

    Google Scholar 

  68. Broers JL, Rot MK, Oostendorp T, Huysmans A, Wagenaar SS, Wiersma-van Tilburg AJ, Vooijs GP, Ramaekers FC: Immunocytochemical detection of human lung cancer heterogeneity using antibodies to epithelial, neuronal, and neuroendocrine antigens. Cancer Res 47: 3225–3234, 1987

    Google Scholar 

  69. Miettinen M, Lehto VP, Dahl D, Virtanen I: Varying expression of cytokeratin and neurofilaments in neuroendocrine tumors of human gastrointestinal tract. Lab Invest 52: 429–436, 1985

    Google Scholar 

  70. Shah IA, Schlageter MO, Netto D: Immunoreactivity of neurofilament proteins in neuroendocrine neoplasms. Mod Pathol 4: 215–219, 1991

    Google Scholar 

  71. Davidoff MS, Schulze W, Middendorff R, Holstein AF: The Leydig cell of the human testis — a new member of the diffuse neuroendocrine system. Cell & Tissue Res 271: 429–439, 1993

    Google Scholar 

  72. Baudoin C, Meneguzzi G, Portier MM, Demarchez M, Bernerd F, Pisani A, Ortonne JP: Peripherin, a neuronal intermediate protein, is stably expressed by neuroendocrine carcinomas of the skin, their xenograft on nude mice, and the corresponding primary cultures. Cancer Res 53: 1175–1181, 1993

    Google Scholar 

  73. Fantini F, Johansson O: Neurochemical markers in human cutaneous Merkel cells. An immunohistochemical investigation. Exper Dermatol 4: 365–371, 1995

    Google Scholar 

  74. Narisawa Y, Hashimoto K, Kohda H: Immunohistochemical demonstration of the expression of neurofilament proteins in Merkel cells. Acta Dermato Venereologica 74: 441–443, 1994

    Google Scholar 

  75. Moll I, Paus R, Moll R: Merkel cells in mouse skin: intermediate filament pattern, localization, and hair cycle-dependent density. J Invest Dermatol 106: 281–286, 1996

    Google Scholar 

  76. Moll I, Kuhn C, Moll R; Cytokeratin 20 is a general marker of cutaneous Merkel cells while certain neuronal proteins are absent. J Investigative Dermatol 104: 910–915, 1995

    Google Scholar 

  77. Shaw G, Osborn M, Weber K: An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol 26: 68–82, 1981

    Google Scholar 

  78. Ogawa A, Sugihara S, Nakanishi Y, Suzuki S, Sasaki A, Hirato J, Nakazato Y: Intermediate filament expression in non-neoplastic pituitary cells. Virchows Archiv B, cell pathology including molecular pathology 58: 331–340, 1990

    Google Scholar 

  79. Frisen J, Johansson CB, Torok C, Risling M, Lendahl U: Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131: 453–464, 1995

    Google Scholar 

  80. Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A: Establishment of a folliculo-stellate-like cell line from a murine thyrotropic pituitary tumor. Endocrinol 131: 3110–3116, 1992

    Google Scholar 

  81. Marin F, Boya J, Lopez-Carbonell A, Borregon A: Immunohistochemical localization of intermediate filament and S-100 proteins in several non-endocrine cells of the human pituitary gland. Archiv Histol & Cytol 52: 241–248, 1989

    Google Scholar 

  82. Achstatter T, Moll R, Anderson A, Kuhn S, Pitz S, Schwechheimer K, Franke WW: Expression of glial filament protein (GFP) in nerve sheaths and non-neural cells re-examined using monoclonal antibodies, with special emphasis on the co-expression of GFP and cytokeratins in epithelial cells of human salivary gland and pleomorphic adenomas. Differentiation 31: 206–227, 1986

    Google Scholar 

  83. Gard AL, White FP, Dutton GR: Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J Neuroimmunol 8: 359–375, 1985

    Google Scholar 

  84. Osborn M, Altmannsberger M, Shaw G, Schauer A, Weber K: Various sympathetic derived human tumors differ in neurofilament expression. Use in diagnosis of neuroblastoma, ganglioneuroblastoma and pheochromocytoma. Virchows Archiv B Cell Pathol Incl Mol Pathol 40: 141–156, 1982

    Google Scholar 

  85. Trojanowski JQ, Lee VM, Schlaepfer WW: An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments. Hum Pathol 15: 248–257, 1984

    Google Scholar 

  86. Mukai M, Torikata C, Iri H, Morikawa Y, Shimizu K, Shimoda T, Nukina N, Ihara Y, Kageyama K: Expression of neurofilament triplet proteins in human neural tumors. An immunohistochemical study of paraganglioma, ganglioneuroma, ganglioneuroblastoma, and neuroblastoma. Amer J Pathol 122: 28–35, 1986

    Google Scholar 

  87. Foley J, Witte D, Chiu FC, Parysek LM: Expression of the neural intermediate filament proteins peripherin and neurofilament-66/alpha/internexin in neuroblastoma. Lab Invest 71: 193–199, 1994

    Google Scholar 

  88. Portier MM, de NB, Gros F: Peripherin, a new member of the intermediate filament protein family. Development Neurosci 6: 335–344, 1983

    Google Scholar 

  89. Trojanowski JQ, Lee VM: Expression of neurofilament antigens by normal and neoplastic human adrenal chromaffin cells. New Engl J Med 313: 101–104, 1985

    Google Scholar 

  90. Kivela T, Tarkkanen A, Virtanen I: Intermediate filaments in the human retina and retinoblastoma. An immunohistochemical study of vimentin, glial fibrillary acidic protein, and neurofilaments. Invest Opthalmol & Vis Sci 27: 1075–1084, 1986

    Google Scholar 

  91. Yuge K, Nakajima M, Uemura Y, Miki H, Uyama M, Tsubura A: Immunohistochemical features of the human retina and retinoblastoma. Virchows Archiv 426: 571–575, 1995

    Google Scholar 

  92. Ohira A, Yamamoto M, Honda O, Ohnishi Y, Inomata H, Honda Y: Glial-, neuronal- and photoreceptor-specific cell markers in rosettes of retinoblastoma and retinal dysplasia. Curr Eye Res 13: 799–804, 1994

    Google Scholar 

  93. Segal A, Carello S, Caterina P, Papadimitriou JM, Spagnolo DV: Gastrointestinal autonomic nerve tumors: a clinicopathological, immunohistochemical and ultrastructural study of 10 cases. Pathol 26: 439–447, 1994

    Google Scholar 

  94. Yang HY, Lieska N, Shao D, Kriho V, Pappas GD: Proteins of the intermediate filament cytoskeleton as markers for astrocytes and human astrocytomas. Mol Chem Neuropathol 21: 155–176, 1994

    Google Scholar 

  95. Dahlstrand J, Collins VP, Lendahl U: Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 52: 5334–5341, 1992

    Google Scholar 

  96. Hirato J, Nakazato Y, Ogawa A: Expression of non-glial intermediate filament proteins in gliomas. Clin Neuropathol 13: 1–11, 1994

    Google Scholar 

  97. Cruz-Sanchez FF, Garcia-Bachs M, Rossi ML, Rodriguez-Prados S, Ferrer I, Coakham HB, Ferreres JC, Figols J, Palacin A: Epithelial differentiation in gliomas, meningiomas and choroid plexus papillomas. Virchows Arch B Cell Pathol Incl Mol Pathol 62: 25–34, 1992

    Google Scholar 

  98. Kashima T, Vinters HV, Campagnoni AT: Unexpected expression of intermediate filament protein genes in human oligodendroglioma cell lines. J Neuropathol & Exp Neurol 54: 23–31, 1995

    Google Scholar 

  99. Tihyama T, Lee VM, Trojanowski JQ: Co-expression of low molecular weight neurofilament protein and glial fibrillary acidic protein in established human glioma cell lines. Amer J Pathol 142: 883–892, 1993

    Google Scholar 

  100. Kashima T, Tiu SN, Merrill JE, Vinters HV, Dawson G, Campagnoni AT: Expression of oligodendrocyte-associated genes in cell lines derived from human gliomas and neuroblastomas. Cancer Res 53: 170–175, 1993

    Google Scholar 

  101. Bodey B, Cosgrove M, Gonzalez-Gomez I, Siegel SE, Martin SE, Gilles FH: Co-expression of four intermediate filament subclasses in childhood glial neoplasms. Mod Pathol 4: 742–749, 1991

    Google Scholar 

  102. Hosoya T, Takizawa K, Nitta K, Hotta Y: Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82: 1025–1036, 1995

    Google Scholar 

  103. Jones BW, Fetter RD, Tear G, Goodman CS: Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82: 1013–1023, 1995

    Google Scholar 

  104. Molenaar WM, Jansson DS, Gould VE, Rorke LB, Franke WW, Lee VM, Packer RJ, Trojanowski JQ: Molecular markers of primitive neuroectodermal tumors and other pediatric central nervous system tumors. Monoclonal antibodies to neuronal and glial antigens distinguish subsets of primitive neuroectodermal tumors. Lab Invest 61: 635–643, 1989

    Google Scholar 

  105. Kleinert R: Immunohistochemical characterization of primitive neuroectodermal tumors and their possible relationship to the stepwise ontogenetic development of the central nervous system. 2. Tumor studies. Acta Neuropathol 82: 508–515, 1991

    Google Scholar 

  106. Smits A, van Grieken D, Hartman M, Lendahl U, Funa K, Nister M: Coexpression of platelet-derived growth factor alpha and beta receptors on medulloblastomas and other primitive neuroectodermal tumors is consistent with an immature stem cell and neuronal derivation. Lab Invest 74: 188–198, 1996

    Google Scholar 

  107. Trojanowski JQ, Hickey WF: Human teratomas express differentiated neural antigens. An immunohistochemical study with anti-neurofilament, anti-glial filament, and antimyelin basic protein monoclonal antibodies. Amer J Pathol 115: 383–389, 1984

    Google Scholar 

  108. Lifschitz-Mercer B, Fogel M, Moll R, Jacob N, Kushnir I, Livoff A, Waldherr R, Franke WW, Czernobilsky B: Intermediate filament protein profiles of human testicular nonseminomatous germ cell tumors: correlation of cytokeratin synthesis to cell differentiation. Differentiation 48: 191–198, 1991

    Google Scholar 

  109. Fogel M, Lifschitz-Mercer B, Moll R, Kushnir I, Jacob N, Waldherr R, Livoff A, Franke WW, Czernobilsky B: Heterogeneity of intermediate filament expression in human testicular seminomas [published erratum appears in Differentiation 1991 Mar; 46(2): 143–145]. Differentiation 45: 242–249, 1990

    Google Scholar 

  110. Gianella-Borradori A, Zeltzer PM, Bodey B, Nelson M, Britton H, Marlin A: Choroid plexus tumors in childhood. Response to chemotherapy, and immunophenotypic profile using a panel of monoclonal antibodies. Cancer 69: 809–816, 1992

    Google Scholar 

  111. Hirose T, Scheithauer BW, Lopes MB, Gerber HA, Altermatt HJ, Hukee MJ, VandenBerg SR, Charlesworth JC: Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol (Berl) 90: 387–399, 1995

    Google Scholar 

  112. Powell SZ, Yachnis AT, Rorke LB, Rojiani AM, Eskin TA: Divergent differentiation in pleomorphic xanthoastrocytoma. Evidence for a neuronal element and possible relationship to ganglion cell tumors. Am J Surg Pathol 20: 80–85, 1996

    Google Scholar 

  113. Marx A, Kirchner T, Greiner A, Muller-Hermelink HK, Schalke B, Osborn M: Neurofilament epitopes in thymoma and antiaxonal autoantibodies in myasthenia gravis. Lancet 339: 707–708, 1992

    Google Scholar 

  114. Miettinen M: Neuroendocrine differentiation in adrenocortical carcinoma. New immunohistochemical findings supported by electron microscopy. Lab Invest 66: 169–174, 1992

    Google Scholar 

  115. Kodama K, Doi O, Higashiyama M, Mori Y, Horai T, Tateishi R, Aoki Y, Misawa S: Establishment and characterization of a new Ewing's sarcoma cell line. Cancer Gen & Cytogen 57: 19–30, 1991

    Google Scholar 

  116. Gerharz CD, Moll R, Ramp U, Mellin W, Gabbert HE: Multidirectional differentiation in a newly established human epithelioid sarcoma cell line (GRU-1) with co-expression of vimentin, cytokeratins and neurofilament proteins. Internat J Canc 45: 143–152, 1990

    Google Scholar 

  117. Parham DM, Dias P, Kelly DR, Rutledge JC, Houghton P: Desmin positivity in primitive neuroectodermal tumors of childhood. Am J Surg Pathol 16: 483–492, 1992

    Google Scholar 

  118. Thompson EW, Torri J, Sabol M, Sommers CL, Byers S, Valverius EM, Martin GR, Lippman ME, Stampfer MR, Dickson RB: Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metas 12: 181–194, 1994

    Google Scholar 

  119. Chu YW, Seftor EA, Romer LH, Hendrix MJ: Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility. Amer J Pathol 148: 63–69, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, CL., Liem, R.K.H. Intermediate filaments in the nervous system: implications in cancer. Cancer Metast Rev 15, 483–497 (1996). https://doi.org/10.1007/BF00054014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054014

Key words

Navigation