Skip to main content
Log in

Second meiotic division restitution (SDR) 2n pollen formation in diploid and hexaploid species of Asparagus

  • Regular Research Papers
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Summary

Plants of two cultivars of 2x A. officinalis L. and two related ornamental species, 2x A. plumosus Baker and 6x A. densiflorus (Kunth) Jessop cv. Sprengeri were screened for production of pollen of heterogeneous size. Twenty four plants out of thirty-one studied produced this type of pollen, with frequencies of 3% or more large pollen. Some of these plants also produced giant grains. The numerically unreduced pollen arose by the lack of chromosome migration at Anaphase II in either one or both cells of a meiocyte, followed by the absence of cytokinesis in cells with abnormal chromosome behavior, a Second Meiotic Division Restitution (SDR) cytological mechanism. Double unreduced pollen resulted from a similar mechanism acting at both Anaphase I and Anaphase II stages. The high frequency of plants which produced 2n pollen in significant amounts is taken as an indication that the modified meiosis observed is under genetic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asker, S., 1980. Gametophytic apomixis. Elements and genetic regulation. Hereditas 93: 277–293.

    Google Scholar 

  • Camadro, E. L., 1986. Los gametos 2n en el origin y la Evoución de las Angiospermas poliploides. Mendeliana 7 (2): 85–100.

    Google Scholar 

  • Camadro, E. L., 1992. Cytological mechanism of 2n microspore formation in garden asparagus. HortScience 27(7): 831–832.

    Google Scholar 

  • de Wet, J. M. J., 1968. Diploid-tetraploid-haploid cycles and the origin of variability in Dichanthium agamospecies. Evolution 22: 394–397.

    Google Scholar 

  • Harlan, J. R. & J. M. J. de Wet, 1975. On O. Winge and a prayer: the origins of polyploidy. Bot. Rev. 41: 361–389.

    Google Scholar 

  • Hermsen, J. G. Th., 1984. Mechanisms and genetic implications of 2n-gamete formation. Iowa State J. Res. 58(4): 421–434.

    Google Scholar 

  • Iwanaga, M. & S. J. Peloquin, 1982. Origin and evolution of cultivated tetraploid potatoes via 2n gametes. Theor. Appl. Genet. 61: 161–169.

    Google Scholar 

  • Johnston, S. A., T. P. den Nijs, S. J. Peloquin & R. E. Hanneman Jr., 1980. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 56: 293–297.

    Google Scholar 

  • Marks, G. E., 1954. An acetocarmine glycerol jelly for use in pollen fertility counts. Stain Technol. 29: 277.

    Google Scholar 

  • Marks, G. E., 1973. Selecting asparagus plants as sources of haploids. Euphytica 22: 310–316.

    Google Scholar 

  • Mashkina, O. S., 1979. Ways of formation of unreduced microspores in the sweet cherry. Tsitologiya i Genetika 13: 343–346.

    Google Scholar 

  • McCollum, G. D., 1988. Asparagus densiflorus cultivars Sprengeri and Myers cross-pollinations with A. officinalis and other species. Asparagus Newsletter 6(1): 1–10.

    Google Scholar 

  • Mendiburu, A. O. & S. J. Peloquin, 1976. Sexual polyploidization and depolyploidization: some terminology and definitions. Theor. Appl. Genet. 49: 53–61.

    Google Scholar 

  • Mendiburu, A. O., S. J. Peloquin & D. W. S. Mok, 1974. Potato Breeding with Haploids and 2n gametes. In: Kasha (Ed.) Haploids in Higher Plants. Guelph: University of Guelph, pp. 249–258.

    Google Scholar 

  • Mok, D. W. S. & S. J. Peloquin, 1975. Three mechanisms of 2n pollen formation in diploid potatoes. Can. J. Genet. Cytol. 17: 217–255.

    Google Scholar 

  • Núñez, O., 1968. An acetic-haematoxylin squash method for small chromosomes. Caryologia 21(2): 115–119.

    Google Scholar 

  • Randall, T. E. & C. M. Rick, 1945. A cytogenetic study of polyembryony in Asparagus officinalis L. Amer. J. Bot. 32: 560–569.

    Google Scholar 

  • Sala, C. A., E. L. Camadro, A. O. Mendiburu & M. T. Salaberry, 1989. Cytological mechanism of 2n pollen formation and sexual polyploidization in Lolium. Euphytica 43: 1–6.

    Google Scholar 

  • Skiebe, K., M. Stein, J. Gottwald & B. Wolterstorff, 1991. Breeding of polyploid asparagus (Asparagus officinalis L.). Plant Breed. 106: 99–106.

    Google Scholar 

  • Snow, R., 1963. Alcoholic-hydrochloric acid carmine as a stain of chromosomes in squash preparations. Stain Technol. 38: 9–13.

    Google Scholar 

  • Stringham, G. R., 1970. A cytochemical analysis of three asynaptic mutants in Brassica campestris. Can. J. Genet. Cytol. 12: 743–749.

    Google Scholar 

  • Swietlinska, Z., 1960. Spontaneous polyploidization in Rumex hybrids. Acta Soc. Botan. Polon. 29: 79–98.

    Google Scholar 

  • Swietlinska, Z. & J. Zuk, 1965. Further observations on spontaneous polyploidization in Rumex hybrids. Acta Soc. Botan. Polon. 34: 439–450.

    Google Scholar 

  • Winge, O., 1917. The chromosomes. Their number and general importance. Comp. Rend. Trav. du Lab. de Carlsberg 13: 131–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camadro, E.L. Second meiotic division restitution (SDR) 2n pollen formation in diploid and hexaploid species of Asparagus . Genet Resour Crop Evol 41, 1–7 (1994). https://doi.org/10.1007/BF00051417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051417

Key words

Navigation