Skip to main content
Log in

Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation

  • Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The problem of estimating the marginal density of a linear process by kernel methods is considered. Under general conditions, kernel density estimators are shown to be asymptotically normal. Their limiting covariance matrix is computed. We also find the optimal bandwidth in the sense that it asymptotically minimizes the mean square error of the estimators. The assumptions involved are easily verifiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chan N. H. and Tran L. T. (1991). Nonparametric tests for serial dependence, J. Time Ser. Anal., 13, 19–28.

    Google Scholar 

  • Chanda K. C. (1983). Density estimation for linear processes, Ann. Inst. Statist. Math., 35, 439–446.

    Google Scholar 

  • Devroye L. and Györfi L. (1985). Nonparametric Density Estimation: The L1 View, Wiley, New York.

    Google Scholar 

  • Gorodetskii V. V. (1977). On the strong mixing properties for linear sequences, Theory Probab. Appl., 22, 411–413.

    Google Scholar 

  • Györfi L., Härdle W. Sarda P. and Vieu P. (1989). Nonparametric curve estimation from time series, Lecture Notes in Statist., 60, Springer, New York.

    Google Scholar 

  • Helson H. and Sarason D. (1990). Past and future, Math. Scand., 21, 5–16.

    Google Scholar 

  • Ibragimov I. A. and Rozanov Yu. V. (1978). Gaussian Random Processes, Springer, New York.

    Google Scholar 

  • Ioannides D. and Roussas G. G. (1987). Note on uniform convergence for mixing random variables, Statist. Probab. Lett., 5, 279–285.

    Google Scholar 

  • Masry E. (1986). Recursive probability density estimation for weakly dependent stationary processes, IEEE Trans. Inform. Theory, IT 18, 254–267.

    Google Scholar 

  • Masry E. (1987). Almost sure convergence of recursive density estimators for stationary mixing processes, Statist. Probab. Lett., 5, 249–254.

    Google Scholar 

  • Masry E. and Györfi L. (1987). Strong consistency and rates for recursive density estimators for stationary mixing processes, J. Multivariate Anal., 22, 79–93.

    Google Scholar 

  • Parzen E. (1962). On estimation of a probability density function and mode, Ann. Math. Statist., 33, 1065–1076.

    Google Scholar 

  • Robinson P. M. (1983). Nonparametric estimators for time series. J. Time Ser. Anal., 4, 185–297.

    Google Scholar 

  • Robinson P. M. (1986). On the consistency and finite sample properties of nonparametric kernel time series regression, autoregression and density estimators, Ann. Inst. Statist. Math., 38, 539–549.

    Google Scholar 

  • Robinson P. M. (1987). Time series residuals with application to probability density estimation, J. Time Ser. Anal., 3, 329–344.

    Google Scholar 

  • Rosenblatt M. (1956). Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27, 832–837.

    Google Scholar 

  • Roussas G. G. (1988). Nonparametric estimation in mixing sequences of random variables, J. Statist. Plann. Inference, 18, 135–149.

    Google Scholar 

  • Roussas G. G. (1990). Nonparametric regression estimation under mixing conditions, Stochastic Process. Appl., 36, 107–116.

    Google Scholar 

  • Sarason D. (1972). An addendum to “Past and future”, Math. Scand., 30, 62–64.

    Google Scholar 

  • Silverman B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.

    Google Scholar 

  • Tran L. T. (1989). Recursive density estimation under dependence, IEEE Trans. Inform. Theory, 35, 1103–1108.

    Google Scholar 

  • Tran L. T. (1992). Kernel density estimation for linear processes, Stochastic Process. Appl. 41, 281–296.

    Google Scholar 

  • Withers C. S. (1981). Conditions for linear processes to be storng mixing, Z. Wahrschr. Verw. Gebiete, 57, 477–480.

    Google Scholar 

  • Yakowitz S. (1985). Nonparametric density estimation, prediction and regression for Markov sequences, J. Amer. Statist. Assoc., 80, 215–221.

    Google Scholar 

  • Yakowitz S. (1987). Nearest-neighbor methods for time series analysis, J. Time Ser. Anal., 8, 235–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF grant DMS-9403718.

About this article

Cite this article

Hallin, M., Tran, L.T. Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation. Ann Inst Stat Math 48, 429–449 (1996). https://doi.org/10.1007/BF00050847

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050847

Key words and phrases

Navigation