Skip to main content
Log in

The diversity of chemical stimulation in fish olfaction and gustation

  • Papers
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adrian E.D. (1950) The electrical activity of the mammalian olfactory bulb. Electroenceph. clin. Neurophysiol. 2, 377–88.

    Google Scholar 

  • Adrian E.D. and Ludwig C. (1938) Nervous discharges from the olfactory organs of fish. J. Physiol., Lond. 94, 441–60.

    Google Scholar 

  • Anderson Ø. and Døving K.B. (1991) Gonadotropin releasing hormone (GnRH) — a novel olfactory stimulant in fish. Neuroreport 2, 458–60.

    Google Scholar 

  • Atema J. (1971) Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav. Evol. 4, 273–94.

    Google Scholar 

  • Bannister L.H. (1965) The fine structure of the olfactory surface of teleostean fishes. Q. J. Microsc. Sci. 106, 333–42.

    Google Scholar 

  • Belghaug R. and Døving K.B. (1977) Odour threshold determined by studies of the induced waves in the olfactory bulb of the charr (Salmo alpinus L.). Comp. Biochem. Physiol. 57A, 327–30.

    Google Scholar 

  • Bjerselius R. and Olsén K.H. (1991) Olfactory sensitivity to sexual hormones in crucian carp (Carassius carassius). In Scott A.P., Sumpter J.P., Kime D.E. and Rolfe M.S., eds. Proc. Fourth International Symposium on the Reproductive Physiology of Fish. Sheffield: University of East Anglia Printing Unit, p. 201.

    Google Scholar 

  • Boeynaems J.M. and Dumont J.E. (1980) Outlines of Receptor Theory. Amsterdam: Elsevier/ North-Holland. 226 pp.

    Google Scholar 

  • Boudreau J.C. (1962) Electrical activity in the olfactory tract of the catfish. Jap. J. Physiol. 12, 272–8.

    Google Scholar 

  • Brown G.E. and Brown J.A. (1992) Do rainbow trout and Atlantic salmon discriminate kin? Can. J. Zool. 70, 1636–40.

    Google Scholar 

  • Cagan R.H. and Zeiger W.N. (1978) Biochemical studies of olfaction: binding specificity of radioactively labelled stimuli to an isolated preparation from rainbow trout (Salmo gairdneri). Proc. natn. Acad. Sci. U.S.A. 75, 4679–83.

    Google Scholar 

  • Cameron J.N. and Randall D.J. (1972) The effect of increased ambient CO2 on arterial CO- tension, CO2 content and pH in rainbow trout. J. exp. Biol. 57, 673–80.

    Google Scholar 

  • Caprio J. (1975) High sensitivity of catfish taste receptors to amino acids. Comp. Biochem. Physiol. 52A, 247–51.

    Google Scholar 

  • Caprio J. (1978) Olfaction and taste in the channel catfish: an electrophysiological study of the responses to amino acids and derivatives. J. comp. Physiol. 123A, 357–71.

    Google Scholar 

  • Caprio J. (1980) Similarity of olfactory receptor responses (EOG) of freshwater and marine catfish to amino acids. Can. J. Zool. 58, 1778–84.

    Google Scholar 

  • Caprio J. (1982) High sensitivity and specificity of olfactory and gustatory receptors of catfish to amino acids. In Hara T.J., ed. Chemoreception in Fishes. Amsterdam: Elsevier, pp. 109–34.

    Google Scholar 

  • Caprio J. (1984) Olfaction and taste in fish. In Bolis L., Keynes R.D. and Maddrell S.H.P., eds. Comparative Physiology of Sensory Systems. Cambridge: Cambridge Univ. Press, pp. 257–83.

    Google Scholar 

  • Caprio J. and Byrd R.P., jun. (1984) Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish. J. gen. Physiol. 84, 403–22.

    Google Scholar 

  • Caprio J., Dudek J. and Robinson J.J.II (1989) Electro-olfactogram and multiunit olfactory receptor responses to binary and trinary mixtures of amino acids in the channel catfish, Ictalurus punctatus. J. gen. Physiol. 93, 245–62

    Google Scholar 

  • Caprio J., Brand J.G., Teeter J.H., Valentincic T., Kalinoski D.L., Kohbara J., Kumazawa T. and Wegert S. (1993) The taste system of the channel catfish from biophysics to behavior. Trends Neurosci. 16, 192–7.

    Google Scholar 

  • Cardwell J.R., Dulka J.G. and Stacey N.E. (1991) Species-specificity of olfactory responsiveness to potential sex pheromones. In Scott A.P., Sumpter J.P., Kime D.E. and Rolfe M.S., eds. Proc. Fourth International Symposium on the Reproductive Physiology of Fish. Sheffield: University of East Anglia Printing Unit, p. 201.

    Google Scholar 

  • Cardwell J.R., Dulka J.G. and Stacey N.E. (1992) Acute olfactory sensitivity to prostaglandins but not to gonadal steroids in two sympatric species of Catostomus (Pisces: Cypriniformes). Can. J. Zool. 70, 1897–1903.

    Google Scholar 

  • Crnjar R., Scalera G., Bigiani A., Barbarossa I.T., Magherini P.C. and Pietra P. (1992) Olfactory sensitivity to amino acids in the juvenile stages of the European eel Anguilla anguilla (L) J. Fish Biol. 40, 567–76.

    Google Scholar 

  • Derivot J.H., Matteri X., Godet R. and Dupé N. (1979) Etude ultrastructurale de la région apicale des cellules de l'épithélium olfactif de Protopterus annectens Owen (Dipneustes). J. Ultrastruct. Res. 66, 22–31.

    Google Scholar 

  • Døving K.B. and Holmberg K. (1974) A note on the function of the olfactory organ of the hagfish Myxine glutinosa. Acta physiol. scand. 91, 430–32.

    Google Scholar 

  • Døving K.B. and Selset R. (1980) Behaviour patterns in cod released by electrical stimulation of olfactory tract bundlets. Science, Wash., D.C. 207, 559–60.

    Google Scholar 

  • Døving K.B., Selset R. and Thommesen G. (1980) Olfactory sensitivity to bile acids in salmonid fishes. Acta. physiol. scand. 108, 123–31.

    Google Scholar 

  • Eisthen H. (1992) Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc. Res. Technique 23, 1–21.

    Google Scholar 

  • Erickson J.R. and Caprio J. (1984) The spatial distribution of ciliated and microvillous olfactory receptor neurons in the channel catfish is not matched by a differential specificity to amino acid and bile salt stimuli. Chem. Senses 9, 127–41.

    Google Scholar 

  • Evans R.E. and Hara T.J. (1985) The characteristics of the electro-olfactogram (EOG): its recovery following olfactory nerve section in rainbow trout (Salmo gairdneri). Brain Res., Amst. 330, 65–75.

    Google Scholar 

  • Evans R.E., Zielinski B. and Hara T.J. (1982) Development and regeneration of the olfactory organ in rainbow trout. In Hara T.J., ed. Chemoreception in Fishes. Amsterdam: Elsevier, pp. 15–37.

    Google Scholar 

  • Ezeasor D.N. (1982) Distribution and ultrastructure of taste buds in the oropharyngeal cavity of the rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 20, 53–68.

    Google Scholar 

  • Foster N.R. (1985) Lake trout reproductive behavior: influence of chemosensory cues from young-of-the-year by-products. Trans. Am. Fish. Soc. 114, 794–803.

    Google Scholar 

  • Fujita I., Satou M. and Ueda K. (1988) Morphology of physiologically identified mitral cells in the carp olfactory bulb: a light microscopic study after intracellular staining with horseradish peroxidase. J. comp. Neurol. 267, 253–68.

    Google Scholar 

  • Getchell M.L., Zielinski B. and Getchell T.V. (1988) Odorant and autonomic regulation of secretion in the olfactory mucosa. In Margolis F.L. and Getchell T.V., eds. Molecular Neurobiology of the Olfactory System. New York: Plenum, pp. 71–98.

    Google Scholar 

  • Getchell T.V. (1974) Electrogenic sources of slow voltage transients recorded from frog olfactory epithelium. J. Neurophysiol. 37, 1115–30.

    Google Scholar 

  • Glaser D. (1966) Untersuchungen über die absoluten Geschmacksschwellen von Fischen. Z. vergl. Physiol. 52, 1–25.

    Google Scholar 

  • Goh Y. and Tamura T. (1978) Electrical responses of the olfactory tract to some chemical stimulants in carp. Bull. Jap. Soc. scient. Fish. 44, 1289–94.

    Google Scholar 

  • Goh Y. and Tamura T. (1980) Olfactory and gustatory responses to amino acids in two marine teleosts-red sea bream and mullet. Comp. Biochem. Physiol. 66C, 217–24.

    Google Scholar 

  • Goh Y., Tamura T. and Kobayashi H. (1979) Olfactory responses to amino acids in marine teleosts. Comp. Biochem. Physiol. 62A, 863–8.

    Google Scholar 

  • Gomahr A., Palzenberger M. and Kotrschal K. (1992) Density and distribution of external taste buds in cyprinids. Env. Biol. Fishes 33, 125–34.

    Google Scholar 

  • Graziadei P.P.C. and Monti Graziadei G.A. (1985) Neurogenesis and plasticity of the olfactory sensory neurons. In Nottebohm F., ed. Hope for a New Neurology (Ann. N.Y. Acad. Sci. Vol. 457). New York: N.Y. Acad. Sci., pp. 127–42.

    Google Scholar 

  • Greer C.A. (1991) Structural organization of the olfactory system. In Getchell T.V., Doty R.L., Bartoshuk L.M. and Snow J.B., jun. eds Smell and Taste in Health and Disease, New York: Raven Press, pp. 65–81.

    Google Scholar 

  • Groot C., Quinn T.P. and Hara T.J. (1986) Responses of migrating adult sockeye salmon (Oncorhynchus nerka) to population-specific odours. Can. J. Zool. 64, 926–32.

    Google Scholar 

  • Hara T.J. (1972) Electrical responses of the olfactory bulb of Pacific salmon, Oncorhynchus nerka and Oncorhynchus kisutch. J. Fish. Res. Bd Can. 29, 1351–5.

    Google Scholar 

  • Hara T.J. (1973) Olfactory responses to amino acids in rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. 44A, 407–16.

    Google Scholar 

  • Hara T.J. (1974) Is morpholine an effective olfactory stimulant in fish? J. Fish. Res. Bd Can. 31, 1547–50.

    Google Scholar 

  • Hara T.J. (1975) Olfaction in fish. Progr. Neurobiol. 5, 271–335.

    Google Scholar 

  • Hara T.J. (1977) Further studies on the structure-activity relationships of amino acids in fish alfaction. Comp. Biochem. Physiol. 56A, 559–65.

    Google Scholar 

  • Hara T.J. (1982a) Structure-activity relationships of amino acids as olfactory stimuli. In Hara T.J., ed. Chemoreception in Fishes. Amsterdam: Elsevier, pp. 135–57.

    Google Scholar 

  • Hara T.J. (ed.) (1982b) Chemoreception in Fishes. Amsterdam: Elsevier. 433 pp.

    Google Scholar 

  • Hara T.J. (1992a) Mechanisms of olfaction. In Hara T.J. ed. Fish Chemoreception. London: Chapman & Hall, pp. 150–70.

    Google Scholar 

  • Hara T.J. (ed.) (1992b) Fish Chemoreception. London: Chapman & Hall, 373 pp.

    Google Scholar 

  • Hara T.J. (1993a) Role of olfaction in fish behaviour. In Pitcher T.J., ed. The Behaviour of Teleost Fishes, 2nd edn. London: Chapman & Hall, pp. 171–99.

    Google Scholar 

  • Hara T.J. (1993b) Chemoreception. In Evans D.H., ed. The Physiology of Fishes. Boca Raton, FL: CRC Press, pp. 191–218.

    Google Scholar 

  • Hara T.J. and Brown S.B. (1979) Olfactory bulbar electrical responses of rainbow trout (Salmo gairdneri) exposed to morpholine during smoltification. J. Fish. Res. Bd Can. 36, 1186–90.

    Google Scholar 

  • Hara T.J. and Brown S.B. (1982) Comment on electroencephalographic responses to morpholine and their relationship to homing: reply. Can. J. Fish. Aquat. Sci. 39, 1546–8.

    Google Scholar 

  • Hara T.J. and Macdonald S. (1975) Morpholine as olfactory stimulus in fish. Science, Wash., D.C. 187, 81–2.

    Google Scholar 

  • Hara, T.J. and Zhang, C. (1994) Spatial coding of odour information in salmonids. Olfaction Taste XI. In press.

  • Hara T.J. and Zielinski B. (1989) Structural and functional development of the olfactory organ in teleosts. Trans. Am. Fish. Soc. 118, 183–94.

    Google Scholar 

  • Hara T.J., Law Y.M.C. and Hobden B.R. (1973) Comparison of the olfactory response to amino acids in rainbow trout, brook trout, and whitefish. Comp. Biochem. Physiol. 45A, 969–77.

    Google Scholar 

  • Hara T.J., Macdonald S., Evans R.E., Marui T. and Arai S. (1984) Morpholine, bile acids and skin mucus as possible chemical cues in salmonid homing: electrophysiological re-evaluation. In McCleave J.D., Arnold G.P., Dodson J.J. and Neill W.H., eds. Mechanisms of Migration in Fishes. New York: Plenum, pp. 363–78.

    Google Scholar 

  • Hara, T.J., Kitada, Y. and Evans, R.E. (1994) Gustatory responses to amino acids in salmonids: phylogenetic considerations. Olfaction Taste XI, In press.

  • Hara T.J., Sveinsson T., Evans R.E. and Klaprat D.A. (1993b) Morphological and functional characteristics of the olfactory and gustatory organs of three Salvelinus species. Can. J. Zool. 71, 414–23.

    Google Scholar 

  • Hasler A.D. and Scholz A.T. (1983) Olfactory Imprinting and Homing in Salmon. Berlin: Ppringer-Verlag. 134 pp.

    Google Scholar 

  • Hidaka I. (1970) The effect of carbon dioxide on the carp palatal chemoreceptors. Bull. Jap. Soc. scient. Fish. 36, 1034–9.

    Google Scholar 

  • Hidaka I. and Ishida Y. (1985) Gustatory response in the shimaisaki (tigerfish) Therapon oxyrhynchus. Bull. Jap. Soc. scient. Fish. 51, 387–91.

    Google Scholar 

  • Hidaka I. and Yokota S. (1967) Taste receptor stimulation by sweet-tasting substances in the carp. Jap. J. Physiol. 17, 652–66.

    Google Scholar 

  • Hidaka I., Kiyohara S., Tabata M. and Yonezawa K. (1975) Gustatory responses in the puffer. Bull. Jap. Soc. scient. Fish. 41, 275–81.

    Google Scholar 

  • Hidaka I., Nyu N. and Kiyohara S. (1976) Gustatory response in the puffer-IV. Effects of mixtures of amino acids and betaine. Bull. Fac. Fish., Mie Univ. 3, 17–28.

    Google Scholar 

  • Hidaka I., Ohsugi T. and Yamamoto Y. (1985) Gustatory response in the young yellowtail Seriola quinqueradiata. Bull. Jap. Soc. scient. Fish. 51, 21–4.

    Google Scholar 

  • Hidaka I., Zeng C. and Kohbara J. (1992) Gustatory response to organic acids in the yellowtail Seriola quinqueradiata. Nippon Suisan Gakkaishi 58, 1179–87.

    Google Scholar 

  • Ichikawa M. and Ueda K. (1977) Fine structure of the olfactory epithelium in the goldfish, Carassius auratus. A study of retrograde degeneration. Cell Tissue Res. 183, 445–55.

    Google Scholar 

  • Irvine I.A.S. and Sorensen P.W. (1991) The olfactory sensitivity of wild Mississippi River carp to sex steroids is similar to the goldfish and varies with maturity and gender. In Scott A.P., Sumpter J.P., Kime D.E. and Rolfe M.S., eds. Proc. Fourth International Symposium on the Reproductive Physiology of Fish. Sheffield: University of East Anglia Printing Unit, p. 203.

    Google Scholar 

  • Ishida Y. and Hidaka I. (1987) Gustatory response profiles for amino acids, glycinebetaine, and nucleotides in several marine teleosts. Nippon Suisan Gakkaishi 53, 1391–8.

    Google Scholar 

  • Ishida Y. and Kobayashi H. (1992) Stimulatory effectiveness of amino acids on the olfactory response in an algivorous marine teleost, the rabbitfish Siganus fuscescens Houttuyn. J. Fish Biol. 41, 737–48.

    Google Scholar 

  • Iwai T. (1964) A comparative study of the taste buds in gill rakers and gill arches of teleostean fishes. Bull. Misaki Mar. Biol. Inst., Kyoto Univ. 7, 19–34.

    Google Scholar 

  • Jakubowski M. and Whitear M. (1990) Comparative morphology and cytology of taste buds in teleosts. Z. mikrosk.-anat. Forsch. 104, 529–60.

    Google Scholar 

  • Johnsen P.B., Zhou H. and Adams M.A. (1988) Olfactory sensitivity of the herbivorous grass carp, Ctenopharyngodon idella, to amino acids. J. Fish. Biol. 33, 127–34.

    Google Scholar 

  • Johnsen P.B., Zhou H. and Adams M.A. (1990) Gustatory sensitivity of the herbivore Tilapia zillii to amino acids. J. Fish Biol. 36, 587–93.

    Google Scholar 

  • Jones K.A. and Hara T.J. (1985) Behavioural responses of fishes to chemical cues: results from a new bioassay. J. Fish Biol. 27, 495–504.

    Google Scholar 

  • Jones K.A., Hara T.J. and Scherer E. (1985) Locomotor response by Arctic charr (Salvelinus alpinus) to gradient of H+ and CO2. Physiol. Zool. 58, 413–20.

    Google Scholar 

  • Kaku T., Tsumagari M., Kiyohara S. and Yamashita S. (1980) Gustatory responses in the minnov, Pseudorasbora parva. Physiol. Behav. 25, 99–105.

    Google Scholar 

  • Kang J. and Caprio J. (1991) Electro-olfactogram and multiunit olfactory receptor responses to complex mixtures of amino acids in the channel catfish, Ictalurus punctatus. J. gen. Physiol. 98, 699–721.

    Google Scholar 

  • Kanwal J.S. and Caprio J. (1983) An electrophysiological investigation of the oro-pharyngeal (ix-x) taste system in the channel catfish, Ictalurus punctatus. J. comp. Physiol. 150A, 345–57.

    Google Scholar 

  • Kanwal J.S. and Finger T.E. (1992) Central representation and projections of gustatory systems. In Hara T.J., ed. Fish Chemoreception. London: Chapman and Hall, pp. 79–102.

    Google Scholar 

  • Kawabata K., Sudo S., Tsubaki K., Tazaki T. and Ikeda S. (1992a) Effects of amino acids on pecking behavior of the rose bittering Rhodeus ocellatus ocellatus. Nippon Suisan Gakkaishi 58, 833–8.

    Google Scholar 

  • Kawabata K., Tsubaki K., Tazaki T. and Ikeda S. (1992b) Sexual behavior induced by amino acids in the rose bittering Rhodeus ocellatus ocellatus. Nippon Suisan Gakkaishi 58, 839–44.

    Google Scholar 

  • Keefe M. (1992) Chemically mediated avoidance behavior in wild brook trout, Salvelinus fontinalis: the response to familiar and unfamiliar predaceous fishes and the influence of fish diet. Can. J. Zool. 70, 288–92.

    Google Scholar 

  • Kinnamon J.C. (1987) Organization and innervation of taste buds. In Finger T.E. and Silver W.L., eds. Neurobiology of Taste and Smell. New York: Wiley-Interscience, pp. 277–97.

    Google Scholar 

  • Kitada, Y. and Hara, T.J. (1994) Effects of diluted natural water and altered ionic environments on gustatory responses in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. In press.

  • Kitamura S. and Ogata H. (1991) Olfactory responses of the male loach (Misgurnus anguillicaudatus) to F-type prostaglandins. Chem. Senses 16, 195.

    Google Scholar 

  • Kiyohara S. and Hidaka I. (1991) Receptor sites for alanine, proline, and betaine in the palatal taste system of the puffer, Fugu pardalis. J. comp. Physiol. 169A, 523–30.

    Google Scholar 

  • Kiyohara S., Hidaka I. and Tamura T. (1975) Gustatory response in the puffer—II. Single fiber analyses. Bull. Jap. Soc. scient. Fish. 41, 383–91.

    Google Scholar 

  • Kiyohara S., Yamashita S. and Harada S. (1981) High sensitivity of minnow gustatory receptors to amino acids. Physiol. Behav. 26, 1103–8.

    Google Scholar 

  • Kobayashi H. and Fujiwara K. (1987) Olfactory response in the yellowtail Seriola quinqueradiata. Nippon Suisan Gakkaishi 53, 1717–25.

    Google Scholar 

  • Kobayashi H. and Goh Y. (1985) Comparison of the olfactory responses to amino acids obtained from receptor and bulbar levels in a marine teleost. Exp. Biol. 44, 199–210.

    Google Scholar 

  • Kohbara J., Michel W. and Caprio J. (1992) Responses of single facial taste fibers in the channel catfish, Ictalurus punctatus, to amino acids. J. Neurophysiol. 68, 1012–26.

    Google Scholar 

  • Konishi J., Hidaka I., Toyota M. and Matsuda H. (1969) High sensitivity of the palatal chemoreceptors of the carp to carbon dioxide. Jap. J. Physiol. 19, 327–41.

    Google Scholar 

  • Kotrschal K. (1991) Solitary chemosensory cells-taste, common chemical sense or what? Rev. Fish Biol. Fish 1, 3–22.

    Google Scholar 

  • Li W. and Sorensen P.W. (1992) The olfactory sensitivity of sea lamprey to amino acids is specifically restricted to arginine. Chem. Senses 17, 658.

    Google Scholar 

  • Li, W. and Sorensen, P.W. (1993) The olfactory system of sea lamprey is highly sensitive and specific to bile acids naturally produced by fish. Presented at AChemS XV, Sarasota, 13–18 April 1993.

  • Limbird L.E. (1986) Cell Surface Receptors: A Short Course on Theory and Methods. Boston: Nijhoff. 196 pp.

    Google Scholar 

  • Mackie A.M. and Adron J.W. (1978) Identification of inosine and inosine 5-monophosphate as the gustatory feeding stimulants for the turbot, Scophthalmus maximus. Comp. Biochem. Physiol. 60A, 79–83.

    Google Scholar 

  • Marui T.,and Caprio J. (1992) Teleost gustation. In Hara T.J., ed. Fish Chemoreception. London: Chapman and Hall, pp. 171–98.

    Google Scholar 

  • Marui T., Harada S. and Kasahara Y. (1983a) Gustatory specificity for amino acids in the facial taste system of the carp, Cyprinus carpio L. J. comp. Physiol. 153A, 299–308.

    Google Scholar 

  • Marui T., Evans R.E., Zielinski B. and Hara T.J. (1983b) Gustatory responses of the rainbow trout (Salmo gairdneri) palate to amino acids and derivatives. J. comp. Physiol. 153A, 423–33.

    Google Scholar 

  • Mearns K.J., Ellingsen O.F., Døving K.B. and Helmer S. (1987) Feeding behaviour in adult rainbow trout and Atlantic salmon parr, elicited by chemical fractions and mixtures of compounds identified in shrimp extract. Aquaculture 64, 47–63.

    Google Scholar 

  • Moore A. and Scott A.P. (1991) Testosterone is a potent odorant in precocious male Atlantic salmon (Salmo salar L.) parr. Phil. Trans. R. Soc. 332B, 241–4.

    Google Scholar 

  • Moore A. and Scott A.P. (1992) 17α,20β-Dihydroxyl-4-pregnen-3-one-20-sulphate is a potent odorant in precocious male Atlantic salmon (Salmo salar L.) parr which have been pre-exposed to the urine of ovulated females. Proc. R. Soc. 24B, 205–9.

    Google Scholar 

  • Morin P.-P and Døving K.B. (1992) Changes in the olfactory function of Atlantic salmon, Salmo salar, in the course of smoltification. Can. J. Fish. Aquat. Sci. 49, 1704–13.

    Google Scholar 

  • Muller J.F. and Marc R.E. (1984) Three distinct morphological classes of receptors in fish olfactory organs. J. comp. Neurol. 222, 482–95.

    Google Scholar 

  • Nelson J.S. (1984) Fishes of the World, 2nd edn. New York: John Wiley & Sons. 523 pp.

    Google Scholar 

  • Ogata H., Nomura T. and Hata M. (1979) Prostaglandin F changes induced by ovulatory stimuli in the pond loach, Misgurnus anguillicaudatus. Bull. Jap. Soc. scient. Fish. 45, 929–31.

    Google Scholar 

  • Ohno T., Yoshii K. and Kurihara K. (1984) Multiple receptor types for amino acids in the carp olfactory cells revealed by quantitative cross-adaptation method. Brain Res., Amst. 310, 13–21.

    Google Scholar 

  • Olsén K.H. (1992) Kin recognition in fish mediated by chemical cues. In Hara T.J. ed., Fish Chemoreception. London: Chapman and Hall, pp. 229–48.

    Google Scholar 

  • Ottoson D. (1959a) Studies on slow potentials in the rabbit's olfactory bulb and nasal mucosa. Acta physiol. Scand. 47, 136–48.

    Google Scholar 

  • Ottoson D. (1959b) Comparison of slow potentials evoked in the frog's nasal mucosa and olfactory bulb by natural stimulation. Acta physiol. Scand. 47, 149–59.

    Google Scholar 

  • Ottoson D. (1971) The electro-olfactogram. In Beidler L.M. ed., Handbook of Sensory Physiology. Vol. 4, Part 1. Berlin: Springer-Verlag, pp. 95–131.

    Google Scholar 

  • Parker G.H. (1912) The relation of smell, taste and the common chemical sense in vertebrates. J. Acad. Nat. Sci., Philad. 15, 219–34.

    Google Scholar 

  • Pfeiffer W. (1982) Chemical signals in communication. In Hara T.J., ed. Chemoreception in Fishes. Amsterdam: Elsevier, pp. 307–26.

    Google Scholar 

  • Quinn T.P. and Hara T.J. (1986) Sibling recognition and olfactory sensitivity in juvenile coho salmon (Oncorhynchus kisutch). Can. J. Zool. 64, 921–5.

    Google Scholar 

  • Resink J.W., Voorthuis P.K., van den Hurk R., Peters R.C. and van Oordt P.G.W.J. (1989) Steroid glucuronides of the seminal vesicles as olfactory stimuli in African catfish, Clarias gariepinus. Aquaculture 83, 153–66.

    Google Scholar 

  • Reutter K. (1982) Taste organ in the barbel of the bullhead. In Hara T.J. ed. Chemoreception in Fishes. Amsterdam: Elsevier, pp. 77–91.

    Google Scholar 

  • Reutter K. (1992) Structure of the peripheral gustatory organ, represented by siluroid fish Plotosus lineatus (Thunberg). In Hara T.J. ed. Fish Chemoreception. London: Chapman and Hall, pp. 60–78.

    Google Scholar 

  • Satou M. (1992) Synaptic organization of the olfactory bulb and its central projection. In Hara T.J. ed. Fish Chemoreception. London: Chapman and Hall, pp. 40–59.

    Google Scholar 

  • Selset R. and Døving K.B. (1980) Behaviour of mature anadromous charr (Salmo alpinus L.) towards odorants produced by smolts of their own population. Acta physiol. Scand. 108, 113–22.

    Google Scholar 

  • Sheldon R.E. (1912) The olfactory tracts and centers in teleosts. J. comp. Neurol. 22, 177–339.

    Google Scholar 

  • Silver W.L. (1979) Olfactory responses from a marine elasmobranch, the Atlantic stingray. Dasyatis sabina. Mar. Behav. Physiol. 6, 297–305.

    Google Scholar 

  • Silver W.L. (1982) Electrophysiological responses from the peripheral olfactory system of the American eel, Anguillarrostrata. J. comp. Physiol. 148A, 379–88.

    Google Scholar 

  • Silver W.L. (1987) The common chemical sense. In Finger T.E. and Silver W.L., eds. Neurobiology of Taste and Smell. New York: John Wiley & Sons, pp. 65–87.

    Google Scholar 

  • Silver W.L., Caprio J., Blackwell J.F. and Tucker D. (1976) The underwater electro-olfactogram: a tool for the study of the sence of smell of marine fishes. Experientia 32, 1216–17.

    Google Scholar 

  • Smith R.J.F. (1992) Alarm signals in fishes. Rev. Fish Biol. Fish. 2, 33–63.

    Google Scholar 

  • Sola C., and Tosi L. (1993) Bile salts and taurine as chemical stimuli for glass eels, Anquilla anquilla: a behavioural study. Environ. Biol. Fishes 37, 197–204.

    Google Scholar 

  • Sorensen P.W. (1992) Hormones, pheromones and chemoreception. In Hara T.J., ed. Fish Chemoreception. London: Chapman and Hall, pp. 199–228.

    Google Scholar 

  • Sorensen P.W., Hara T.J. and Stacey N.E. (1987) Extreme olfactory sensitivity of mature and gonadally-regressed goldfish to a potent steroidal pheromone, 17α,20β-dihydroxy-4-pregnen-3-one. J. comp. Physiol. 160A, 305–13.

    Google Scholar 

  • Sorensen P.W., Hara T.J., Stacey N.E. and Goetz F. Wm. (1988) F Prostaglandins function as potent olfactory stimulants that comprise the postovulatory female sex pheromone in goldfish. Biol. Reprod. 39, 1039–50.

    Google Scholar 

  • Sorensen P.W., Hara T.J., Stacey N.E. and Dulka J.G. (1990) Extreme olfactory specificity of male goldfish to the preovulatory steroidal pheromone 17α,20β-dihydroxy-4-pregnen-3-one. J. comp. Physiol. 166A, 373–83.

    Google Scholar 

  • Sorensen P.W., Goetz F.Wm., Scott A.P. and Stacey N.E. (1991a) Recent studies indicate that goldfish use mixtures of unmodified hormones and hormonal metabolites as sex pheromones. In Scott A.P., Sumpter J.P., Kime D.E. and Rolfe M.S., eds. Proc. Fourth International Symposium on the Reproductive Physiology of Fish. Sheffield: University of East Anglia Printing Unit, pp. 191–3.

    Google Scholar 

  • Sorensen P.W., Hara T.J. and Stacey N.E. (1991b) Sex pheromones selectively stimulate the medial olfactory tracts of male goldfish. Brain Res., Amst. 558, 343–7.

    Google Scholar 

  • Sorensen P.W., Irvine I.A.S., Scott A.P. and Stacey N.E. (1992) Electrophysiological measures of olfactory sensitivity suggest that goldfish and other fish use species-specific mixtures of hormones and their metabolites as pheromones. In Doty R.L. and Müller-Schwarze D., eds. Chemical Signals in Vertebrates 6. New York: Plenum Press, pp. 357–64.

    Google Scholar 

  • Stabell O.B. (1987) Intraspecific pheromone discrimination and substrate marking by Atlantic salmon parr. J. Chem. Ecol. 13, 1625–43.

    Google Scholar 

  • Stabell O.B. (1992) Olfactory control of homing behaviour in salmonids. In Hara T.J., ed. Fish Chemoreception. London: Chapman and Hall, pp. 249–70.

    Google Scholar 

  • Stacey N.E. (1987) Roles of hormones and pheromones in fish reproductive behavior. In Crews D., ed. Psychobiology of Reproductive Behavior. Englewood Cliffs, NJ: Prentice-Hall, pp. 28–69.

    Google Scholar 

  • Stacey N.E. and Kyle A.L. (1983) Effects of olfactory tract lesions on sexual and feeding behavior in the goldfish. Physiol. Behav. 30, 621–8.

    Google Scholar 

  • Sutterlin A.M. and Sutterlin N. (1970) Taste responses in Atlantic salmon (Salmo salar) parr. J. Fish. Res. Bd Can. 27, 1927–42.

    Google Scholar 

  • Sutterlin A.M. and Sutterlin N. (1971) Electrical responses of the olfactory epithelium of Atlantic salmon (Samo salar). J. Fish. Res. Bd Can. 28, 565–72.

    Google Scholar 

  • Suzuki N. (1978) Effects of different ionic environments on the responses of single olfactory receptors in the lamprey. Comp. Biochem. Physiol. 61A, 461–7.

    Google Scholar 

  • Suzuki N., and Tucker D. (1971) Amino acids as olfactory stimuli in freshwater catfish, Ictalurus catus (Linn). Comp. Biochem. Physiol. 40A, 399–404.

    Google Scholar 

  • Sveinsson, T. (1985) Electrophysiological and behavioural studies on chemoreception in Artic charr (Salvelinus alpinus). MSc thesis, Univ. Manitoba, Winnipeg. 177 pp.

    Google Scholar 

  • Sveinsson, T. (1992) F-type prostaglandins as reproductive pheromones in Arctic charr (Salvelinus alpinus): biochemical, electrophysiological, and behavioural studies. PhD thesis, Univ. Manitoba, Winnipeg. 129 pp.

    Google Scholar 

  • Sveinsson T. and Hara T.J. (1990a) Analysis of olfactory responses to amino acids in Arctic charr (Salvelinus alpinus) using a linear multiple-receptor model. Comp. Biochem. Physiol. 97A, 279–87.

    Google Scholar 

  • Sveinsson T. and Hara T.J. (1990b) Multiple olfactory receptors for amino acids in Arctic charr (Salvelinus alpinus) evidenced by cross-adaptation experiments. Comp. Biochem. Physiol. 97A, 289–93.

    Google Scholar 

  • Sveinsson, T. and Hara, T.J. (1994) Electrophysiological studies of the olfactory receptor for prostaglandins in Arctic charr, Salvelinus alpinus. Chem Senses (in press).

  • Sveinsson, T. and Hara, T.J. (1994b) Release of F-type prostaglandins by ripe males and behavioral reactions to PGF of both sexes of Arctic charr, Salvelinus alpinus. Env. Biol. Fishes (in press).

  • Teichmann H. (1959) Über die Leistung des Geruchssinnes beim Aal. Z. vergl. Physiol. 42, 206–54.

    Google Scholar 

  • Theisen B. (1972) Ultrastructure of the olfactory epithelium in the Australian lungfish Neoceratodus forsteri. Acta zool., Stockh. 53, 205–18.

    Google Scholar 

  • Theisen B. (1973) The olfactory system in the hagfish Myxine glutinosa. I. Fine structure of the apical part of the olfactory epithelium. Acta zool., Stockh. 54, 271–84.

    Google Scholar 

  • Theisen B. (1976) The olfactory system in the Pacific hagfishes Eptatretus stoutii, Eptatretus deani, and Myxine circifrons. Acta zool., Stockh. 57, 167–73.

    Google Scholar 

  • Theisen B., Zeiske E. and Breucker H. (1986) Functional morphology of the olfactory organs in the spiny dogfish (Squalus acanthias L.) and the small-spotted catshark (Scyliorhinus canicula L.). Acta Zool. (Stockh.) 67, 73–86.

    Google Scholar 

  • Theisen B., Zeiske E., Silver W.L., Marui T. and Caprio J. (1991) Morphological and physiological studies on the olfactory organ of the striped eel catfish, Plotosus lineatus. Mar. Biol. 110, 127–35.

    Google Scholar 

  • Thommesen G. (1978) The spatial distribution of odour induced potentials in the olfactory bulb of charr and trout (Salmonidae). Acta physiol. Scand. 102, 205–17.

    Google Scholar 

  • Thommesen G. (1982) Specificity and distribution of receptor cells in the olfactory mucosa of charr (Salmo alpinus L.) Acta physiol. Scand. 115, 47–56.

    Google Scholar 

  • Thommesen G. (1983) Morphology, distribution, and specificity of olfactory receptor cells in salmonid fishes. Acta physiol. Scand. 117, 241–9.

    Google Scholar 

  • Thornhill R.A. (1967) The ultrastructure of the olfactory epithelium of the lamprey Lampetra fluviatilis. J. Cell sci. 2, 591–602.

    Google Scholar 

  • Von Frisch K. (1941) Ueber einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z. Vgl. Physiol. 29, 46–145.

    Google Scholar 

  • Wegert S. and Caprio J. (1991) Receptor sites for amino acids in the facial taste system of the channel catfish. J. comp. Physiol. 168A, 201–11.

    Google Scholar 

  • Whitear M. (1992) Solitary chemosensory cells. In Hara T.J., ed. Fish Chemoreception. London: Chapman & Hall, pp. 103–125.

    Google Scholar 

  • Wysocki C.J. and Meredith M. (1987) The vomeronasal system. In Finger T.E. and Silver W.L., eds. Neurobiology of Taste and Smell. New York: John Wiley & Sons, pp. 125–50.

    Google Scholar 

  • Yamamori K., Nakamura M., Matsui T. and Hara T.J. (1988) Gustatory responses to tetrodotoxin and saxitoxin in fish: a possible mechanism for avoiding marine toxins. Can. J. Fish. Aquat. Sci. 45, 2182–6.

    Google Scholar 

  • Yamamoto M. (1982) Comparative morphology of the peripheral olfactory organ in teleosts. In Hara T.J., ed. Chemoreception in Fishes. Amsterdam: Elsevier, pp. 39–59.

    Google Scholar 

  • Yamashita S. and Yoshii K. (1977) CO2 response to exteroceptors in the minnow (Pseudorabora parva). In LeMagnen J. and MacLeod P., eds. Olfaction and Taste V. London: Information Retrieval, p. 295.

    Google Scholar 

  • Yamashita S., Evans R.E. and Hara T.J. (1989) Specificity of the gustatory chemoreceptors for CO2 and H+ in rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 46, 1730–34.

    Google Scholar 

  • Yoshii K., Kamo N., Kurihara K. and Kobatake Y. (1979) Gustatory responses of eel palatine receptors to amino acids and carboxylic acids. J. gen. Physiol. 74, 301–17.

    Google Scholar 

  • Yoshii K., Kashiwayanagi M., Kurihara K. and Kobatake Y. (1980) High sensitivity of the eel palatine receptors to carbon dioxide. Comp. Biochem. Physiol. 66A, 327–30.

    Google Scholar 

  • Zeiske E., Caprio J. and Gruber S.H. (1986) Morphological and electrophysiological studies on the olfactory organ of the lemon shark, Negaprion brevirostris (Poey). In Proc. 2nd Int. Conf. Indo-Pacific Fishes. Vyeno T., Arai R., Taniuchi T. and Matsuura K., eds. Tokyo: Ichthyological Society of Japan, pp. 381–91.

    Google Scholar 

  • Zeiske E., Theisen B. and Breucker H. (1992) Structure, development, and evolutionary aspects of the peripheral olfactory system. In Hara T.J., ed. Fish Chemoreception. London: Chapman and Hall, pp. 13–39.

    Google Scholar 

  • Zeiske E., Thisen B. and Gruber S.H. (1987) Functional morphology of the olfactory organ of two carcharhinid shark species. Can. J. Zool. 65, 2406–2412.

    Google Scholar 

  • Zeng C. and Hidaka I. (1990) Single fiber responses in the palatine taste nerve of the yellowtail Seriola quinqueradiata. Nippon Suisan Gakkaishi 56, 1611–18.

    Google Scholar 

  • Zielinski B. and Hara T.J. (1988) Morphological and physiological development of olfactory receptor cells in rainbow trout (Salmo gairdneri) embryos. J. comp. Neurol. 271, 300–311.

    Google Scholar 

  • Zielinski B.S. and Hara T.J. (1992) Ciliated and microvillar receptor cells degenerate and then differentiate in the olfactory epithelium of rainbow trout following olfactory nerve section. Microsc. Res. Technique 23, 22–27.

    Google Scholar 

  • Zielinski B.S., Getchell M.L. and Getchell T.V. (1988) Ultrastructural characteristics of sustentacular cells in control and odorant-treated olfactory mucosae of the salamander. Anat. Rec. 221, 769–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, T.J. The diversity of chemical stimulation in fish olfaction and gustation. Rev Fish Biol Fisheries 4, 1–35 (1994). https://doi.org/10.1007/BF00043259

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043259

Keywords

Navigation