Skip to main content
Log in

Phytomass structure of natural plant communities on spodosols in southern Venezuela: The tall Amazon Caatinga forest

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The phytomass structure of the evergreen lowland forest vegetation (Tall Amazon Caatinga) supported by tropaquods near San Carlos de Rio Negro, Federal Amazon Territory of Venezuela was studied in 13 10 m× 10 m plots. The plots were laid out subjectively to cover a low topographical gradient along which the forest on tropaquod is grading into a low woodland (Bana, or Low Amazon Caatinga). The phytomass was estimated by destructive sampling.

The total living phytomass (dry matter) varies between 199 t/ha in one plot including a natural gap, to 822 t/ha in a plot located near a blackwater creek draining the 10 ha study site in which the vegetation was surveyed. Dead aboveground phytomass (dry matter) varies between 2 and 37 t/ha. The average leaf area index is 5.1. Leaves are sclerophyllous. The mesophyll leaf size class is dominant.

Compared with other Amazonian rainforests the Tall Amazon Caatinga is lower in aboveground phytomass and wood volume, respectively, but its root average proportion is 2.4 times greater.

One hundred and thirty species (dbh≥1 cm) were recorded in all plots. 14–45 species per plot composed the aboveground phytomass. 20 species each had a relative frequency of 50 or more percent. 7 of these species plus 10 less frequent ones each represented 10 or more percent of the basal area in at least 1 plot. Sixteen species each contributed 10 or more percent to the aboveground phytomass, in at least 1 plot. There is only 1 species (Micranda sprucei, Euphorbiaceae) which was observed in all plots. Its contribution to basal area and aboveground phytomass is considerable. M. sprucei is also the dominant species of the top canopy layer. Eperua leucantha, Caesalpiniaceae, is subdominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandre, D. V., 1981. L'indice foliaire des forêts tropicales. Acta Oecologica, Oecol. Gener. 2: 299–312.

    Google Scholar 

  • Anderson, A. B., 1981. White-sand vegetation of Brazilian Amazonia. Biotropica 13: 199–210.

    Google Scholar 

  • Balick, M. J., 1981. Une huile comestible de haute qualité en provenance des espéces Jessenia et Oenocarpus: un complex de palmiers natifs de la vallée de l'Amazonas. Oleágineux 36: 320–326.

    Google Scholar 

  • Balick, M. J. & Gershoff, St. N., 1981. Nutritional evaluation of the Jessenia bataua palm: Source of high quality protein and oil from tropical America. Econom. Bot. 35: 261–271.

    Google Scholar 

  • Bongers, F. & Engelen. D., 1982. Internal Report Div. Geobotany University of Nijmegen.

  • Bongers, F., Engelen. D. & Klinge, H., 1983. Phytomass structure of natural plant communities on spodosols in southern Venezucla: Bana forest. Vegetation (in review).

  • Brünig, E. F., 1974. Biomass diversity and biomass sampling in tropical rainforest. UFRO Biomass Stud., Orono/Maine. pp. 269–294.

    Google Scholar 

  • Brünig, E. F., 1980. Structure and function of a tropical rainforest in the Amazon MAB-ecosystem project at San Carlos de Rio Negro. 5. In: J. I. Furtado (ed.) Proc. Vth Internat. Symp. Trop. Ecol., Kuala Lumpur 1979 1: 33–45.

  • Correa, A. de A. & Correa, C. M., 1979. Floresta utilização de produtos de madeira. Acta Amazonica 9, Suppl., pp. 155–164.

    Google Scholar 

  • Davis, T. A. W. & Richards, P. W., 1933. The vegetation of Moraballi creek, British Guiana: An ecological study of a limited area of tropical rainforest. I. J. Ecol. 21: 350–384.

    Google Scholar 

  • Davis, T. A. W. & Richards, P. W., 1934. The vegetation of Moraballi creek, British Guiana: An ecological study of a limited area of tropical rainforest. II. J. Ecol. 22: 106–155.

    Google Scholar 

  • Fittkau, E. J., 1971. Ökologische Gliederung des Amazonasgebietes auf geochemischer Grundlage. Münster. Forsch. Geol. Paläontol. 20/21: 35–50.

    Google Scholar 

  • Furch, K. & Klinge, H., 1978. Towards the biogeochemistry of alkali and alkali-earth metals in northern South America. Acta Cient. Venez. 29: 434–444.

    Google Scholar 

  • Furch, K., Junk, W. J. & Klinge, H., (in press). Unusual chemistry of natural waters from the Amazon region. Acta Cient. Venez.

  • Garcia, V., Cuevas, E. & Medina, E., 1980. Escleromorfismo foliar en árboles de la cuenca del Río Negro. Acta Cient. Venez., Suppl. 1: 76.

    Google Scholar 

  • Golley, F. B., 1981. Ten years of MAB: establishing the balance sheet. Nat. & Res. 12: 3–7.

    Google Scholar 

  • Herrera, R., 1977. Soil and terrain conditions in the international Amazon project at San Carlos de Rio Negro, Venezuela, correlation with vegetation types. In: E. F. Brünig (ed.) Trans. Internt. MAB-IUFRO Workshop, Hamburg-Reinbek 1977. pp. 193–199.

  • Herrera, R., 1979. Nutrient distribution and cycling in an Amazonian Caatinga forest on spodosols in southern Venezuela. Ph.D. thesis, University of Reading, 241 pp.

  • Herrera, R. & Jordan, C. F., 1981. Nitrogen cycle in a tropical amazonian rainforest: The Caatinga of low mineral nutrient status. In: F. E. Clark & R. Rosswall (eds.) Terrestrial nitrogen cycles. Ecol. Bull (Stockholm) 33: 493–505.

  • Herrera, R., Jordan, C. F., Klinge, H. & Medina, E., 1978a. Amazon ecosystems. Their structure and functioning with particular emphasis on nutrients. Interciencia 3: 223–232.

    Google Scholar 

  • Herrera, R., Jordan, C. F., Medina, E. & Klinge, H., 1981. How human activities disturb the nutrient cycles of a tropical rainforest in Amazonia. Ambio 10: 109–114.

    Google Scholar 

  • Herrera, R., Medina, E., Klinge, H., Jordan, C. F. & Uhl. C. (in press). Nutrient retention mechanisms in tropical forests: The Amazon Caatinga. San Carlos Pilot Project, Venezuela. Proc. Unesco-MAB Symp. Ecology in Practice, Paris 1981.

  • Herrera, R., Merida, T., Stark, N. & Jordan, C. F., 1978b. Direct phosphorus transfer from leaf litter to roots. Naturwiss. 65: 208/9.

    Google Scholar 

  • Heuveldop, J., 1977. Die amazonische Caatinga bei San Carlos de Rio Negro, Südvenezuela: Relative Beleuchtungsstärken im Bestand. Forstarch. 48: 148–154.

    Google Scholar 

  • Heuveldop, J., 1980. Bioklima von San Carlos de Rio Negro, Venezuela. Amazoniana 7: 7–17.

    Google Scholar 

  • Hozumi, K., Yoda, K., Kokawa, S. & Kira, T., 1969. Production ecology of tropical rainforest in southern Cambodia. I. Plant biomass. Nature and Life in SE Asia 6: 2–51.

    Google Scholar 

  • Hueck, K., 1966. Die Wälder Südamerikas, Fischer, Stuttgart, pp. 39–42.

    Google Scholar 

  • Humbel, F.-X., 1978. Caractérisation, par des mesures physiques, hydriques et d'enracinement, de sols de Guyane française à dynamique de l'eau superficielle. Bull. Assoc. franç. étude sol. Science du sol 2: 83–94.

    Google Scholar 

  • Jordan, C. F., 1978. Stem flow and nutrient transfer in a tropical rainforest. Oikos 31: 257–263.

    Google Scholar 

  • Jordan, C. F., (in press). The rainforest of the Central Amazon Basin is a nutrient filter. Oikos.

  • Jordan, C. F. & Cline, J. R., 1977. Transpiration of trees in a tropical rainforest. J. appl. Ecol. 14: 853–860.

    Google Scholar 

  • Jordan, C. F., Golley, F., Hall, J. & Hall, J., 1980. Nutrient scavenging of rainfall by the canopy of an Amazonian rainforest. Biotropica 12: 61–66.

    Google Scholar 

  • Jordan, C. F. & Uhl, C., 1978. Biomass of a ‘tierra firme’ forest of the Amazon Basin. Oecol. Plant. 13: 387–400.

    Google Scholar 

  • Kaufmann, M. R. & Troendle, C. A., 1981. The relationship of leaf area and foliage biomass to sapwood conducting area in four subalpine forest tree species. Forest Sci. 27: 477–482.

    Google Scholar 

  • Klinge, H., 1973. Root mass estimation in lowland tropical rainforests of Central Amazonia. I. Trop. Ecol. 14: 29–38.

    Google Scholar 

  • Klinge, H., 1976. Nährstoffe, Wasser und Durchwurzelung von Podsolen und Latosolen unter tropischem Regenwald bei Manaus Amazonien. Biogeographica 7: 45–58.

    Google Scholar 

  • Klinge, H., 1977. Biomass and nutrient store structure of the tropical rainforest ecosystem. In: E. F. Brünig (ed.) Trans. Internat. MAB-IUFRO Workshop. Hamburg-Reinbek 1977. pp. 200–204.

  • Klinge, H., 1978. Studies on the ecology of Amazon Caatinga forest in southern Venezuela. 2. Acta Cient. Venez. 29: 258–262.

    Google Scholar 

  • Klinge, H. & Fittkau, E. J., 1972. Filterfunktionen im Ökosystem des zentralamazonischen Regenwaldes. Mitt. dt. bodenkundl. Ges. 16: 130–135.

    Google Scholar 

  • Klinge, H. & Herrera, R., 1978. Biomass studies in Amazon Caatinga forest in southern Venezuela. 1. Trop. Ecol. 19: 93–110.

    Google Scholar 

  • Klinge, H. & Medina, E., 1979. Rio Negro Caatingas and campinas. Amazonas states of Venezuela and Brazil. In: R. L. Specht (ed.) Heathlands and related shrublands. Ecosystems of the world. Elsevier, Amsterdam-Oxford New York, 9A, pp. 483–488.

    Google Scholar 

  • Klinge, H., Medina, E. & Herrera, R., 1977. Studies on the ecology of Amazona Caatinga forest in southern Venezuela. 1. Acta Cient. Venez. 28: 270–276.

    Google Scholar 

  • Klinge, H. & Rodrigues, W. A., 1973. Biomass estimation in a central Amazonian rainforest. Acta Cient. Venez. 24: 225–237.

    Google Scholar 

  • Klinge, H., Rodrigues, W. A., Brünig, E. & Fittkau, E. J., 1975. In: F. B., Golley & E., Medina (eds.) Tropical ecological systems. Springer, New York Heidelberg-Berlin, pp. 115–122.

    Google Scholar 

  • Kurz, W. A., 1982. Biomasse eines amazonischen immergrünen Feuchtwaldes. Entwicklung einer allgemeinen Biomasseregression. Thesis University of Hamburg.

  • Lescure, J. P., Puig, H., Leclerc, D., Riera, B., Beekman, F. & Beneteau, A., (in press). La phytomasse epigée de la forêt dense en Guyane Francaise. Acta Oecologica.

  • Medina, E., 1981. Nitrogen content, leaf structure and photosynthesis in higher plants: a report to the UNEP study group on photosynthesis and bioproductivity. London 1981, 49 pp.

  • Medina, E., Herrera, R., Jordan, C. & Klinge, H., 1977. The Amazon Project of the Venezuelan Institute for Scientific Research. Nature & Resources 13: 4–6.

    Google Scholar 

  • Medina, E. & Klinge, H., (in press). Tropical forests and tropical woodlands. In: A. Pirson & M. H. Zimmermann (eds.) Encyclopedia of Plant Physiology. Springer, Berlin.

  • Medina, E., Klinge, H., Jordan, C. & Herrera, R., 1980. Soil respiration in Amazonian rainforest in the Rio Negro Basin. Flora 170: 240–250.

    Google Scholar 

  • Medina, E., Sobrado, M. & Herrera, R., 1978. Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation. Rad. environm. biophysics 15: 131–140.

    Google Scholar 

  • Medina, J. D. & de, Santis, V., 1981. Constituents of the trunk resin of Eperua purpurea. Planta Medica 43: 202–206.

    Google Scholar 

  • Ohler, F. M. J., 1980. Phytomass and mineral content in untouched forests. CELOS rapp., 43 pp. University of Surinam 132.

  • Peace, W. J. H. & Macdonald, F. D., 1981. An investigation of the leaf anatomy, foliar mineral levels, and water relations of trees of a Sarawak forest. Biotropica 13: 100–109.

    Google Scholar 

  • Richards, P. W., 1941. Lowland tropical podsols and their vegetation. Nature (Lond.) 148: 129–131.

    Google Scholar 

  • Richards, P. W., 1965. Soil conditions in some Bornean lowland plant communities. Proc. Symp. ecol. res. in humid trop. vegetation, Kuching 1963, Govt. Sarawak-Unesco Sci. Coop. Off. SE Asia, pp. 198–205.

  • Richards, P. W., 1957. The tropical rainforest. Cambridge, University Press. 450 pp.

    Google Scholar 

  • Rodrigues, W. A., 1961. Aspectos fitosociologicos des caatingas do Rio Negro. Bolm Mus. par. ‘E. Goeldi’, N.S., Bot. 15.

  • Sanders, N., 1981. Struktur and Funktionen in Waldökosystemen: Die ökologische Bedeutung von Strukturmerk malen und physio-ökologischen Eigenschaften der Belaubung in tropischen immergrünen Feuchtwald. Thesis, University of Hamburg, 102 pp.

  • Sobrado, M. & Medina, E., 1980. General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the ‘bana’ vegetation of Amazonas. Oecologia (Berl.) 45: 341–345.

    Google Scholar 

  • Sprick, E., 1979. Composición mineral y contenido de fenoles foliares de espécies leñosas de tres bosques contrastantes de la región amazónica. Thesis, Central University of Venezuela, 283 pp.

  • Spruce, R., 1908. Notes of a botanist on the Amazon and the Andes. MacMillan, London, vols. 1 and 2, 518 pp. and 542 pp.

    Google Scholar 

  • Stark, N., 1970. Direct nutrient cycling in the Amazon Basin. In: J. M. Idrobo (ed.) II Simp. Foro biol. trop. amazon., Florencia (Caquetá)-Leticia (Amazonia) 1969, Bogotá 1970, pp. 172–177.

  • Stark, N. & Spratt, M., 1977. Biomass and nutrient storage in rainforest oxisols near San Carlos de Rio Negro. Trop. Ecol. 18: 1–9.

    Google Scholar 

  • Takeuchi, M., 1962. The structure of the Amazonian vegetation. IV. J. Fac. Sci., Univ. Tokyo, Section III, Bot. 8: 279–288.

    Google Scholar 

  • Uhl. C., 1980. Studies of forest, agricultural, and successional environments in the upper Rio Negro region of the Amazon Basin. Ph.D. thesis, Michigan State University, 201 pp.

  • Went, F. W. & Stark, N., 1968a. The biological and mechanical role of soil fungi. Proc. nat. Acad. Sci. USA 60: 497–504.

    Google Scholar 

  • Went, F. W. & Stark, N., 1968b. Mycorrhiza. BioScience 18: 1035–1039.

    Google Scholar 

  • Wrobel, S., 1977. Holzanatomische Untersuchungen zur Wachstumsrhythmik von drei Laubbaumarten aus der Amazonischen Caatinga. Thesis, University of Hamburg, 53 pp.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Paul W. Richards.

Our most sincere gratitude is extended to Mr. Juan Moreno, San Carlos de Rio Negro, for species identification and accurate field work related to the phytomass harvest. We are also grateful to our workers and the technicians in the laboratories at Caracas and Plön, respectively, and to Prof. Veillon and M. J. P. Lescure, for making available unpublished data. Prof. Medina kindly calculated the sap wood area from our data. The financial support by the Deutsche Forschungsgemeinschaft. Consejo Nacional para la Ciencia y Tecnología, Venezuela (CONICIT), and Organization of American States (O.A.S.) is hereby acknowledged. The Venezuelan Ministry of the Environment helped with transportation and logistics.

Contribution to Venezuelan MAB ecosystem pilot project San Carlos de Rio Negro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinge, H., Herrera, R. Phytomass structure of natural plant communities on spodosols in southern Venezuela: The tall Amazon Caatinga forest. Vegetatio 53, 65–84 (1983). https://doi.org/10.1007/BF00043025

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043025

Keywords

Navigation