Skip to main content
Log in

Decrease in allochthonous organic inputs in dark submarine caves, connection with lowering in benthic community richness

  • Part One: Trophic Level Interaction
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Ten sediment trap arrays were deployed over two years for periods of 3 to 40 days in three different sampling points along a 50 m long Mediterranean submarine cave. Mean total particulate matter flux decreased strongly from the semi-dark area (3.3 g m−2 d−1) to the dark area (0.8 and 0.6 g m−2 d−1). Carbon represented 3.3% to 3.5% and nitrogen 0.34% to 0.38% of settling dry matter. The decrease in organic input from the entrance to the terminal part of the cave results in increasingly oligotrophic conditions with distance from the cave entrance. Horizontal resource limitation can be connected with a strong zonal decrease in fauna richness. Biomass declines both in hard substrate and soft bottom communities. Despite major differences, some similarities are noticed between oligotrophic conditions that may occur in the dark cave and those in around 1000 m depth ecosystems. Dark oligotrophic submarine caves can be considered to be good scale models for the study of some aspects of general trophic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blomqvist, S. & L. Hakanson, 1981. A review on sediment traps in aquatic environments. Arch. Hydrobiol. 91: 101–132.

    Google Scholar 

  • Blomqvist, S. & C. Kofoed, 1981. Sediment trapping a subaquatic in situ experiment. Limnol. Oceanogr. 26: 585–590.

    Google Scholar 

  • Buscail, R., L. Guidi & F. de Bovée, 1987. Flux de matière organique, variations des paramètres biochimique et dynamique biologique dans le canyon Lacaze-Duthiers (golfe du Lion). Coll. int. Oceanol., Perpignan, Comm. int. Médit. (CIESM), Monaco: 75.

  • Butman, C. A., 1986. Sediment trap biases in turbulent flows: result from a laboratory flume study. J. mar. Res. 44: 645–693.

    Google Scholar 

  • Byers, S. C., E. L. Mills & P. L. Stewart, 1978. A comparison of methods of determining organic carbon in marine sediments with sugestion for a standard method. Hydrobiologia 58: 43–47.

    Google Scholar 

  • Cauwet, G., 1985. Dynamique de la matière organique dans les milieux marins et polyhalins: son role dans les processus géochimiques aux interfaces. Thèse Doct. ès Sci. Univ. Perpignan, 389 p.

  • Fichez, R., 1989. Phénomènes d'oligotrophie en milieu aphotique, étude des grottes sous-marines, comparaison avec les milieux profonds et bilans énergétiques. Thèse Doct. Univ. d'Aix-Marseille II, 251 p.

  • Fichez, R., 1990. Les pigments chlorophylliens: indices d'oligotrophie dans les grottes sous-marines. C. r. Acad. Sci. Paris (ser. III). 310: 155–161.

    Google Scholar 

  • Gardner, W. D., 1980a. Sediment trap dynamics and calibration: a laboratory evaluation. J. mar. Res. 38: 17–39.

    Google Scholar 

  • Gardner, W. D., 1980b. Field assessment of sediment traps. J. mar. Res. 38: 41–52.

    Google Scholar 

  • Gili, J. M., T. Riera & M. Zabala, 1986. Physical and biological gradients in a submarine cave on the Western Mediterranean coast, (North-East Spain). Mar. Biol. 90: 291–297.

    Google Scholar 

  • Hargrave, B. T. & N. M. Burns, 1979. Assessment of sediment trap collection efficiency. Limnol. Oceanogr. 24: 1124–1135.

    Google Scholar 

  • Hargrave, B. T. & G. A. Phillips, 1986. Dynamics of the benthic foods web; St. Georges Bay, southern Gulf of St. Laurence. Mar. Ecol. Prog. Ser. 31: 277–294.

    Google Scholar 

  • Harmelin, J. G., 1969. Bryozoaires des grottes sous-marines obscures de la région marseillaise, faunistique et écologie. Téthys 1: 793–806.

    Google Scholar 

  • Harmelin, J. G., J. Vacelet & P. Vasseur, 1985. Les grottes sous-marines obscures: un milieu extréme et un remarquable biotope refuge. Téthys 11: 214–229.

    Google Scholar 

  • Hinga, K. R., J. Mc N. Sieburth & G. R. Heath, 1979. The supply and use of organic material at the deep-sea floor. J. mar. Res. 37: 557–579.

    Google Scholar 

  • Hirota, J. & J. P. Szyper, 1975. Separation of total carbon into inorganic and organic components. Limnol. Oceanogr. 20: 896–900.

    Google Scholar 

  • Karl, D. M. & G. A. Knauer, 1984. Vertical distribution, transport and exchange of carbon in the northeast Pacific Ocean: evidence for multiple zones of biological activity. Deep-Sea Res. 31: 221–243.

    Google Scholar 

  • Knauer, G. A., J. H. Martin & K. W. Bruland, 1979. Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the northeast Pacific. Deep-Sea Res. 26: 97–108.

    Google Scholar 

  • Kristensen, E. & F. O. Andersen, 1987. Determination of organic carbon in marine sediments: a comparison of two CHN-analyzer methods. J. exp. mar. Biol. Ecol. 109: 15–23.

    Google Scholar 

  • Laborel, J. & J. Vacelet, 1958. Etude des peuplements d'une grotte sous-marine du golfe de Marseille. Bull. Inst. Océanogr., Monaco 55 (1120): 1–20.

    Google Scholar 

  • Laborel, J. & J. Vacelet, 1959. Les grottes sous-marines obscures en Méditerranée. Cah. océanogr. 13: 73–107.

    Google Scholar 

  • Lorenzen, C. J., F. R. Shuman, J. T. Bennett, 1981. In situ calibration of a sediment trap. Limnol. Oceanogr. 26: 580–585.

    Google Scholar 

  • Lorenzen, C. J., N. A. Welschmeyer & A. E. Copping, 1983. Particulate organic carbon flux in the subartic Pacific. Deep-Sea Res. 30: 639–643.

    Google Scholar 

  • Marinopoulos, J., 1989. Etude des peuplements infralittoraux de substrats rocheux de la région de Marseille et des facteurs abiotiques (lumière, hydrodynamique) les influençant. Thèse Doct. ès Sci., Univ. d'Aix-Marseille II, 646 p.

  • Monteiro-Marques, V., 1981. Peuplements des planchers envasés de trois grottes sous-marines de la région de Marseille. Etude préliminaire. Téthys 10: 89–96.

    Google Scholar 

  • Noriki, S. & S. Tsunogai, 1986. Particulate fluxes and major components of settling particles from sediment trap experiments in the Pacific Ocean. Deep-Sea Res. 33: 903–917.

    Google Scholar 

  • Pérès, J. M. & J. Picard, 1949. Notes sommaires sur le peuplement des grottes sous-marines de la région de Marseille. C. R. Soc. Biogéogr. 227: 42–45.

    Google Scholar 

  • Smetacek, V., 1984. The supply of food to the benthos. In M. J. R. Fasham (ed.), Flows of energy and materials in marine ecosystems: theory and practice. Plenum Press, New-York: 517–547.

    Google Scholar 

  • Spencer, D. W., P. G. Brewer, A. Fleer, S. Honjo, S. Krisnaswami & Y. Nozaki, 1978. Chemical fluxes from a sediment trap experiment in the deep Sargasso sea. J. mar. Res. 36: 493–523.

    Google Scholar 

  • Tsunogai, S. & S. Noriki, 1987. Organic matter fluxes and the sites of oxygen consumption in deep water. Deep-Sea Res. 34: 755–767.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fichez, R. Decrease in allochthonous organic inputs in dark submarine caves, connection with lowering in benthic community richness. Hydrobiologia 207, 61–69 (1990). https://doi.org/10.1007/BF00041441

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041441

Key words

Navigation