Skip to main content
Log in

Osmotic adaption in Australian mangroves

  • Ecophysiological Studies
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Young and old leaves of twenty-three mangrove species from northern Queensland (Australia) were investigated for their mineral ion and organic solute content. With a few exceptions, the Na+ and the Cl-concentrations calculated on the basis of plant water (p.w.) were close to that of seawater and showed little age-induced changes. In some species, especially in Ceriops tagal, SO4 2- accumulated with increasing leaf age. The most widely distributed organic solutes were pinitol and mannitol, which were stored up to 280 mM plant water. A negative correlation between pinitol and SO4 2- was found in the case of Ceriops tagal. Other compatible solutes known for halophytes, such as proline and methylated quaternary ammonium compounds (MQAC), were present only in a few mangrove species. Proline occurred in two Xylocarpus species, while MQAC were accumulated by Avicennia eucalyptifolia, A. marina, Acanthus ilicifolius, Heritiera littoralis and Hibiscus tiliaceus. In all other species, low molecular weight carbohydrates (LMWC) were the main organic solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Larher, F. & Stewart, G. R., 1979. Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol. 82: 671–678.

    Google Scholar 

  • Albert, R., 1975. Salt regulation in halophytes. Oecologia 21: 57–71.

    Google Scholar 

  • Albert, R. & Kinzel, H., 1973. Unterscheidung von Physiotypen bei Halophyten des Neusiedlerseegebietes (Österreich). Z. Pflanzenphysiol. 70: 138–157.

    Google Scholar 

  • Albert, R. & Popp, M., 1977. Chemical composition of halophytes from the Neusiedler Lake region in Austria. Oecologia 27: 157–170.

    Google Scholar 

  • Albert, R. & Popp, M., 1978. Zur Rolle der löslichen Kohlenhydrate in Halophyten des Neusiedlersee-Gebietes (Österreich). Oecol. Plant. 13: 27–42.

    Google Scholar 

  • Atkinson, M. R., Findlay, G. P., Hope, A. B., Pitman, M. G., Saddler, H. D. W. & West, K. R., 1967. Salt regulation in the mangroves Rhizophora mucronata Lam. and Aegialitis annulata R. Br. Aust. J. Biol. Sci. 20: 589–599.

    Google Scholar 

  • Briens, M. & Larher, F. 1982. Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ. 5: 287–292.

    Google Scholar 

  • Boto, K. G., 1982. Nutrient and organic fluxes in mangroves. In: B. Clough (ed.), Mangrove Ecosystems in Australia: Structure, Function and Management, pp. 239–257. Australian National University Press, Canberra.

    Google Scholar 

  • Cavalieri, A. J. & Huang, A. H. C., 1979. Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment. Am. J. Bot. 66: 307–312.

    Google Scholar 

  • Clough, B. F., Andrews, T. J. & Cowan, I. R., 1982. Physiological processes in mangroves. In: B. Clough (ed.), Mangrove Ecosystems in Australia: Structure, Function and Management, pp. 193–210. Australian National University Press, Canberra.

    Google Scholar 

  • Dowling, R. M. & McDonald, T. J., 1982. Mangrove communities of Queensland. In: B. Clough (ed.), Mangrove Ecosystems in Australia: Structure, Function and Management, pp. 79–93. Australian National University Press, Canberra.

    Google Scholar 

  • Flowers, T. J., Troke, P. F. & Yeo, A. R., 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 28: 89–121.

    Google Scholar 

  • Gorham, J., Hughes, L. L. & Wyn Jones, R. G., 1980. Chemical composition of salt-marsh plants from Ynys-Mon (Anglesey)-the concept of physiotypes. Plant Cell Environ. 3: 309–319.

    Google Scholar 

  • Hellebust, J. A., 1976. Osmoregulation. Ann. Rev. Plant Physiol. 27: 485–505.

    Google Scholar 

  • Jefferies, R. L., Rudmik, T. & Dillon, E. M., 1979. Responses of halophytes to high salinities and low water potentials. Plant Physiol. 64: 989–994.

    Google Scholar 

  • Köningshofer, H., 1981. Stoffwechselphysiologische Untersuchungen an Plantago-Arten unter besonderer Berücksichti-gung ökologischer Aspekte. Phil. Diss., Wien.

  • Leigh, R. A., Ahmad, N. & Wyn Jones, R. G., 1981. Assessment of glycine betaine and proline compartmentation by analysis of isolated beet vacuoles. Planta 153: 34–41.

    Google Scholar 

  • Lewis, D. H. & Smith, D. C., 1967. Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytol. 66: 143–184.

    Google Scholar 

  • Paleg, L. G., Douglas, T. J., van Daal, A. & Keech, D. B., 1981. Proline, betaine and other organic solutes protect enzymes against heat inactivation. Aust. J. Plant Physiol. 8: 107–114.

    Google Scholar 

  • Phillips, R. D. & Jennings, D. H., 1976. The estimation of plant organic acids by gas-liquid chromatography. New Phytol. 77: 333–339.

    Google Scholar 

  • Popp, M., 1984. Chemical composition of Australian mangroves. I. Inorganic ions and organic acids. Z. Pflanzenphysiol. 113: 395–409.

    Google Scholar 

  • Popp, M. & Kinzel, H., 1981. Changes in the organic acid content of some cultivated plants induced by mineral ion deficiency. J. Exp. Bot. 32: 1–8.

    Google Scholar 

  • Potts, W. T. W. & Parry, G., 1964. Osmotic and Ionic Regulation in Animals. Macmillan, New York.

    Google Scholar 

  • Scholander, P. F., Hammel, H. T., Hemmingsen, E. & Garey, W., 1962. Salt balance in mangroves. Plant Physiol. 37: 722–729.

    Google Scholar 

  • Scholander, P. F., Bradstreet, E. D., Hammel, H. T. & Hemmingsen, E. A., 1966. Sap concentrations in halophytes and some other plants. Plant Physiol. 41: 529–532.

    Google Scholar 

  • Smirnoff, N. & Stewart, G. R., 1985. Stress metabolites and their role in coastal plants. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of Coastal Vegetation. Vegetatio 61/62: 273–278.

  • Stewart, G. R., Larher, F., Ahmad, I. & Lee, J. A. 1979. Nitrogen metabolism and salt-tolerance in higher plant halophytes. In: R. L. Jefferies & A. J. Davy (eds.), Ecological Processes in Coastal Environments, pp. 211–227. Blackwell Scientific Publ. London.

    Google Scholar 

  • Stewart, G. R. & Larher, F., 1980. Accumulation of amino acids and related compounds in relation to environmental stress. In: B. J. Miflin (ed.), The Biochemistry of Plants, Vol. 5: Amino Acids and Derivatives, pp. 609–635. Academic Press, New York.

    Google Scholar 

  • Stewart, G. R. & Lee, J. A., 1974. The role of proline accumulation in halophytes. Planta 120: 279–289.

    Google Scholar 

  • Storey, R. & Wyn Jones, R. G., 1975. Betaine and choline levels in plants and their relationship to NaCl stress. Plant Sci. Lett. 4: 161–168.

    Google Scholar 

  • Storey, R. & Wyn Jones, R. G., 1977. Quaternary ammonium compounds in plants in relation to salt resistance. Phytochemistry 16: 447–453.

    Google Scholar 

  • Treichel, S., 1975. Der Einfluβ von NaCl auf die Prolinkonzentration verschiedener Halophyten. Z. Pflanzenphysiol. 76: 56–68.

    Google Scholar 

  • Wall, J. S., Christian, D. D., Dimler, R. J. & Sentri, I. Q., 1960. Spectrophotometric determination of betaine and other quaternary nitrogen compounds as their periodides. Anal. Chem. 32: 870–874.

    Google Scholar 

  • Walter, H. & Steiner, M., 1936. Die Ökologie der Ost-Afrikanischen Mangroven. Z. Bot. 30: 65–193.

    Google Scholar 

  • Wyn Jones, R. G. & Storey, R., 1981. Betains. In: L. G. Paleg & D. Aspinall (eds.), Physiology and Biochemistry of Drought Resistance in Plants, pp. 171–204. Academic Press, Sydney.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nomenclature follows the checklist of the Australian Institute of Marine Science (Townsville).

Acknowledgements: This study was supported by grants from the H. and E. Walter-Stiftung (West Germany, Schimper-Fellowship 1981 to M. P.) and by the Austrian Science Research Fund (Project No. 4051). The kind help and support from Dir. Dr J. and E. Bunt as well as from Dr B. Clough (AIMS, Townsville) during sample collection is thankfully acknowledged. Thanks are due to Doz. Dr Jurinitsch (Pharmacy Dept., University of Vienna) for identification of hexitols by capillary GC, to Mag. V. Langer and Mag. H. Röβner for their skillful technical assistance, and to A. Dickie for correcting the manuscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dopp, M., Larher, F. & Weigel, P. Osmotic adaption in Australian mangroves. Vegetatio 61, 247–253 (1985). https://doi.org/10.1007/BF00039831

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039831

Keywords

Navigation