Skip to main content
Log in

Cytological changes related with salt tolerance in embryogenic callus of Citrus limon

  • Original Research Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Electron microscopy observations of salt-tolerant embrogenic calli of Citrus limon [(L.) Burm. f.] showed several changes in cell ultrastructure when compared with control calli. Both types of calli comprised clusters of meristematic cells, but salt-tolerant calli had several structural differences: thick cell walls, ring-shaped mitochondria, an increased content of lipid bodies, microbodies and parallel accumulation of rough endoplasmatic reticulum. These structural features seem to be related with salt tolerance in Citrus limon cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Hayyim G & Kochba J (1983) Aspect of salt tolerance in a NaCl selected stable cell line of Citrus sinensis. Plant Physiol. 72: 695–690

    Google Scholar 

  • Boudier JA, Marchi D, Cataldo C, Massacrier A & Cau P (1981) Origin and fate of autophagic vacuoles in exons and nerve-endings of the rat neurohypophysis. II Relationships with axoplasic reticulum and three dimensional aspects. Biol. Cell. 40: 33–40

    Google Scholar 

  • Bressan RA, Nelson DE, Iraki NH (1990) Reduced cell expansion and changes in cell walls of plant cells adapted to NaCl. In: Katterman F (Ed) Environmental Injury to Plants (pp 137–139). Academic Press Inc. NY

    Google Scholar 

  • Button J, Kochba J & Borman CH (1974) Fine structure and embryoid development from embryogenic ovullar callus of ‘Shamouti’ orange (Citrus sinensis Osb). J. Expt. Bot. 25: 446–457

    Google Scholar 

  • Chandler S & Thorpe TA (1986) Variation from plant tissue cultures: biotechnological application to improving salinity tolerance. Biotechnol. Adv. 4: 157–164

    Google Scholar 

  • Diaz de Leon JL, Soto H, Merchant MT & Diaz de León L (1982) Biochemical and ultrastructural changes induced by NaCl in cell cultures derived from Bouvardia ternifolia. In: San Pietro A (Ed) Biosaline Research (pp 461–466). Plenum, New York

    Google Scholar 

  • Dutta PC, Applequist L, Gunnarsson L & Von Hofsten S (1991) Lipid bodies in tissue culture, somatic and zygotic embryo of Daucus carota L.: a qualitative and quantitative study. Plant. Sci. 78: 215–221

    Google Scholar 

  • Dutta Gupta S, Joshi PA, Hovanesian JC & Conger BV (1992) Ultrastructural characterization of somatic embryos regenerated from NaCl selected and nonselected calli of Dactylis glomerata. Protoplasma 170: 177–185

    Google Scholar 

  • Ericson JLE (1969) Studies on induced cellular autophagy I. Electron microscopy of cells with in vivo labelled lysosomes. Exp. Cell. Res. 55: 95–106

    Google Scholar 

  • Fransz PF & Schell JHN (1991) An ultrastructural study of the early development of somatic embryos in maize. Can. J. Bot. 69: 858–865

    Google Scholar 

  • Halperin W & Jensen WA (1967) Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J. Ultrastructal. Res. 18: 428–443

    Google Scholar 

  • Hecht-Buchholz C (1983) Light and electron microscopy investigations of the reaction of various genotypes to nutritional disorders. Plant Soil 72: 151–165

    Google Scholar 

  • Huang CX & van Stevenick RFM (1990) Salinity induced structural changes in meristematic cells of barley roots. New. Phytol. 115: 17–22

    Google Scholar 

  • Konar RN, Thomas E & Street HE (1986) Origin and structure of embryoids arising from epidermal cells of the stem of Ranunculus sceleratus L. J. Cell Biol. 11: 77–93

    Google Scholar 

  • Kramer D (1983) Genetically determined adaptations in roots to nutritional stress: correlation of structure and function. Plant Soil 72: 167–173

    Google Scholar 

  • Kramer D (1984) Cytological aspects of salt tolerance in higher plants. In: Staples RC & Toeniessen GH (Eds) Salinity Tolerance in Plants. Strategies for Crop Improvement (pp 3–15). John Wiley & Sons Inc., New York

    Google Scholar 

  • Leedale GF, Buetow DE (1976) Observations on cytolysome formation and other cytological phenomena in carbon-starved Euglena gracillis. J. Microsc. Biol. Cell. 25: 149–154

    Google Scholar 

  • Mesquita F (1972) Ultrastructure de formations comparables aux vacuoles autophagiques dans les cellules des racines de Alium cepa et du Lupinus albus. Cytologie 37: 95–110

    Google Scholar 

  • Nazarenko LV & Serebryakova VN (1990) Ultrastructural changes in Euglena cells of different nutritional types under the influence of salinity. Sov. Plant Physiol. 76: 142–146

    Google Scholar 

  • Newcomb W & Wetherell DF (1970) The effects of 2,4,6-trichorophenoxyacetic acid on embryogenesis in wild carrot tissue cultures. Bot. Gaz. 131: 242–245

    Google Scholar 

  • Nymann LP, Walter RJ, Donovan RD, Berns MV & Arditti J (1987) Effects of artificial seawater on the ultrastructure and morphometry of taro (Colocasia esculenta) cells in vitro. Environ. Expt. Bot. 27: 245–252

    Google Scholar 

  • Piqueras A & Hellín E (1990) Somatic embryogenesis in Citrus limon. A simple reproducible model for developmental studies in woody plants, In: Puigdomenech P & Nelson T (Eds) Approaches to Plant Development (p 67). Fundación J. March, Madrid

    Google Scholar 

  • Piqueras A & Hellín E (1992) Selección y caracterización de una línea cellular de limonero (C. limon), tolerante a estrés salino. Suelo y Planta 2: 629–640

    Google Scholar 

  • Poljakoff-Mayber A (1981) Ultrastructural consequences of drought. In: Paleg LG & Aspinall D (Eds) The Physiology and Biochemistry of Drought Resistance in Plants (pp 389–403). Academic Press. NY

    Google Scholar 

  • Profumo P, Gastaldo P & Rascio N (1987) Ultrastructural study of different types of callus from leaf explants of Aesculus hipposcastanum L. Protoplasma 138: 89–97

    Google Scholar 

  • Ramagopal S (1988) Regulation of protein synthesis in root, shoot and embryonic tissues of germinating barley during salinity stress. Plant Cell Environ. 11: 501–515

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17: 208–212

    Google Scholar 

  • Seltzer R, Laüchli A & Kramer D (1975) Interzellulare transportwerge des chlorids in wurzeln intakter gerstepflanzen. Cytobiologie 10: 449–457

    Google Scholar 

  • Sing NK, LaRosa ChP, Handa AK & Hasegawa PM (1989) Reduced growth rate and changes in cell wall protein in plant cells adapted to NaCl. In: Cherry JH (Ed) Biochemical and Physiological Mechanisms Associated with Environmental Stress Tolerance in Plants (pp 173–194). NATO ASI series, Vol G19. Springer Verlag, Berlin

    Google Scholar 

  • Smith MM, Hodson MJ, Opik H & Wainwright SJ (1982) Salt-induced ultrastructural damage to mitochondria in root tips of a salt sensitive ecotype of Agrostis stolonifera. J. Expt. Bot. 33: 886–895

    Google Scholar 

  • Spuit AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastr. Res. 26: 31–43

    Google Scholar 

  • Van Steveninck RFM, Van Steveninck ME, Hall TA & Peters PD (1974) X-ray microanalysis and distribution of halides in Nitella transucens. In: Saunders JV & Goodchild DJ (Eds) Electron Microscopy. Vol 2 (pp 602–603). Australian Academy of Sciences, Canberra

    Google Scholar 

  • Valadimirova MG (1976) Changes of ultrastructural organization during functional reorganization of the cell in Chlorella sp. Fiziol. Rast 23(6): 1180–1185

    Google Scholar 

  • Whatley JM & Whatley FR (1987) When is a chromoplast? New Phytol. 106: 667–678

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piqueras, A., Olmos, E. & Hellín, E. Cytological changes related with salt tolerance in embryogenic callus of Citrus limon . Plant Cell Tiss Organ Cult 39, 13–18 (1994). https://doi.org/10.1007/BF00037586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037586

Key words

Navigation