Skip to main content
Log in

Numerical simulations of dynamic crack growth along an interface

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Dynamic crack growth is analyzed numerically for a plane strain bimaterial block with an initial central crack. The material on each side of the bond line is characterized by an isotropic hyperelastic constitutive relation. A cohesive surface constitutive relation is also specified that relates the tractions and displacement jumps across the bond line and that allows for the creation of new free surface. The resistance to crack initiation and the crack speed history are predicted without invoking any ad hoc failure criterion. Full finite strain transient analyses are carried out, with two types of loading considered; tensile loading on one side of the specimen and crack face loading. The crack speed history and the evolution of the crack tip stress state are investigated for parameters characterizing a PMMA/Al bimaterial. Additionally, the separate effects of elastic modulus mismatch and elastic wave speed mismatch on interface crack growth are explored for various PMMA-artificial material combinations. The mode mixity of the near tip fields is found to increase with increasing crack speed and in some cases large scale contact occurs in the vicinity of the crack tip. Crack speeds that exceed the smaller of the two Rayleigh wave speeds are also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Rice, Journal of Applied Mechanics 55 (1988) 98–103.

    Article  Google Scholar 

  2. C.F. Shih, Materials Science and Engineering A143 (1991) 77–90.

    Article  Google Scholar 

  3. J.W. Hutchinson,and Z. Suo, Advances in Applied Mechanics 29 (1992) 69–191.

    Google Scholar 

  4. L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge (1990).

    Book  Google Scholar 

  5. W. Yang, Z. Suo and C.F. Shih, Proceedings of the Royal Society of London A 433 (1991) 679–697.

    Article  Google Scholar 

  6. J.R. Willis, Philosophical Transactions of the Royal Society (London) 274 (1973) 435–491.

    Article  Google Scholar 

  7. L.M. Brock and J.D. Achenbach, International Journal of Solids and Structures 9 (1973) 53–67.

    Article  Google Scholar 

  8. C. Liu, J. Lambros and A.J. Rosakis, Journal of the Mechanics and Physics of Solids 41 (1993) 1887–1954.

    Article  Google Scholar 

  9. C.Y. Lo, T. Nakamura and A. Kushner, International Journal of Solids and Structures 31 (1994) 145–168.

    Article  Google Scholar 

  10. H.V. Tippur and A.J. Rosakis, Experimental Mechanics 31 (1991) 243–251.

    Article  Google Scholar 

  11. J. Lambros and A.J. Rosakis, Journal of the Mechanics and Physics of Solids 43 (1995) 169–188.

    Article  Google Scholar 

  12. J. Lambros and A.J. Rosakis, International Journal of Solids and Structures 32 (1995) 2677–2702.

    Article  Google Scholar 

  13. C. Liu, Y. Huang and A.J. Rosakis, Journal of the Mechancs annd Physics of Solids 43 (1995) 189–206.

    Article  Google Scholar 

  14. A. Needleman, Journal of Applied Mechanics 54 (1987) 525–531.

    Article  Google Scholar 

  15. A. Needleman, International Journal of Fracture 42 (1990) 21–40.

    Article  Google Scholar 

  16. A. Needleman, Journal of the Mechanics and Physics of Solids 38 (1990) 289–324.

    Article  Google Scholar 

  17. V. Tvergaard and J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 40 (1992) 1377–1392.

    Article  Google Scholar 

  18. V. Tvergaard and J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 41 (1993) 1119–1135.

    Article  Google Scholar 

  19. X.-P. Xu and A. Needleman, Journal of the Mechanics and Physics of Solids 42 (1994) 1397–1434.

    Article  Google Scholar 

  20. X.-P. Xu and A. Needleman, in Fracture and Damage in Quasibrittle Structures: Experiment Modeling and Computer Analysis, Z.P. Bazant, Z. Bitnar, M. Jirasek and J. Mazars (eds.), E. and F.N. Spon, London (1994) 373–386.

    Google Scholar 

  21. X.-P. Xu and A. Needleman, International Journal of Fracture 74 (1995) 253–275.

    Google Scholar 

  22. X.-P. Xu and A. Needleman, in Dislocations 93, Solid State Phenomena 35–36, J. Rabier, A. George, Y. Brechet and L. Kubin (eds.), Scitec Publications, Zug, Switzerland (1994) 287–302.

    Google Scholar 

  23. X.-P. Xu and A. Needleman, Modelling and Simulation in Materials Science and Engineering 1 (1993) 111–132.

    Article  Google Scholar 

  24. J. Dundurs, Journal of Applied Mechanics 36 (1969) 650–652.

    Article  Google Scholar 

  25. A.H. England, Journal of Applied Mechanics 32 (1965) 400–402.

    Article  Google Scholar 

  26. F. Erdogan, Journal of Applied Mechanics 32 (1965) 403–410.

    Article  Google Scholar 

  27. J.R. Rice and G.C. Sih, Journal of Applied Mechanics 32 (1965) 418–423.

    Article  Google Scholar 

  28. J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Article  Google Scholar 

  29. T. Nakamura, C.F. Shih and L.B. Freund, International Journal of Fracture 27 (1985) 229–243.

    Article  Google Scholar 

  30. R.D. Krieg and S.W. Key, International Journal of Numerical Methods in Engineering 7 (1973) 273–286.

    Article  Google Scholar 

  31. T. Belytschko, R.L. Chiapetta and H.D. Bartel, International Journal for Numerical Methods in Engineering 10 (1976) 579–596.

    Article  Google Scholar 

  32. K.M. Liechti and Y.S. Chai, Journal of Applied Mechanics 59 (1992) 295–304.

    Article  Google Scholar 

  33. J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland (1973).

  34. C. Atkinson, in Mechanics of Fracture-4: Elastodynamic Crack Problems, G.C. Sih (ed.), Leyden, Noordhoff (1977) 213–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, XP., Needleman, A. Numerical simulations of dynamic crack growth along an interface. Int J Fract 74, 289–324 (1996). https://doi.org/10.1007/BF00035845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035845

Keywords

Navigation