Skip to main content
Log in

A note on calibration of ductile failure damage indicators

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

After a review of the literature on the prognosis of ductile fracture, a damage indicator is developed which is based on micromechanical results and adapted to experiments. A calibration of this damage indicator is possible by inspecting in detail a load displacement curve for a long and smooth specimen. Relation to currently published damage indicators is discussed. The damage indicators can be used to indicate the onset of a local crack in a ductile structure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Oyane, Bulletin of the Japanese Society of Mechanical Engineering 15 (1972) 1507–1513.

    Google Scholar 

  2. A.L. Gurson, Transactions ASME Series H, Journal of Engineering Materials and Technology 99 (1977) 2–15.

    Google Scholar 

  3. V. Tvergaard and A. Needleman, Acta Metallurgica 32 (1984) 157–169.

    Google Scholar 

  4. J. Devaux, J.B. Leblond, G. Mottet and G. Perrin, in Advances in Fracture/Damage Models for the Analysis of Engineering Problems, AMD Vol. 137, American Society of Mechanical Engineers, New York (1992) 181–194.

    Google Scholar 

  5. B. Bennani, P. Picart and J. Oudin, International Journal of Damage Mechanics 2 (1993) 118–136.

    Google Scholar 

  6. V. Tvergaard, Computer Methods in Applied Mechanics and Engineering 103 (1993) 273–290.

    Google Scholar 

  7. J. Tirosh and R. Gutfinger, in Damage Mechanics in Engineering Materials, AMD- Vol. 109, AMD Vol. 24, American Society of Mechanical Engineers, New York (1990) 129–141.

    Google Scholar 

  8. J. Eftis and J.A. Nemes, International Journal of Plasticity 7 (1991) 275–293.

    Google Scholar 

  9. D. Holland, X. Kong, N. Schlüter and W. Dahl, Steel Research 63 (1992) 361–367.

    Google Scholar 

  10. X. Kong, H. Zhao, D. Holland and W. Dahl, Steel Research 63 (1992) 120–125.

    Google Scholar 

  11. Y.-S. Lee and P.R. Dawson, in Modeling the Deformation of Crystalline Solids, T.C. Lowe, A.D. Rollett, P.S. Follansbee and G.S. Daehn (eds.), The Minerals, Metals & Materials Society, Pittsburgh (1991) 499–511.

    Google Scholar 

  12. Y.-S. Lee and P.R. Dawson, Mechanics of Materials 15 (1993) 21–34.

    Google Scholar 

  13. Y.-S. Lee and P.R. Dawson, Mechanics of Materials 15 (1993) 35–52.

    Google Scholar 

  14. Y.P. Qiu and G.J. Weng, International Journal of Plasticity 9 (1993) 271–290.

    Google Scholar 

  15. G. Rousselier, in Three-Dimensional Constitutive Relations and Ductile Fracture, S. Nemat-Nasser (ed.), North Holland Publishing Company, Amsterdam (1981) 331–355.

    Google Scholar 

  16. G. Rousselier, J.-C. Devaux, G. Mottet and G. Devesa, in Nonlinear Fracture Mechanics: Vol.II Elastic-Plastic Fracture ASTM STP 995, J.D. Landes, A. Saxena and J.G. Merkle (eds.), Philadelphia (1989) 332–354.

  17. K. Kussmaul, U. Eisele and M. Seidenfuss, Transactions ASME Series B, Journal of Pressure Vessel Technology 115 (1993) 214–220.

    Google Scholar 

  18. J. Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  19. T.-J. Wang, Engineering Fracture Mechanics 42 (1992) 177–183.

    Google Scholar 

  20. T.-J. Wang, Engineering Fracture Mechanics 42 (1992) 185–193.

    Google Scholar 

  21. T.-J. Wang, Engineering Fracture Mechanics, 44 (1993) 971–980.

    Google Scholar 

  22. S. Chandrakanth and P.C. Pandey, International Journal of Fracture 60 (1993) R73-R76.

    Google Scholar 

  23. K. Nakazima, T. Kikuma and K. Hasuka, Yawata Technical Report 164, Yawata Works, Japan (1968) 141–154.

    Google Scholar 

  24. F.B. Beremin, Metallurgical Transactions 12A (1981) 723–731.

    Google Scholar 

  25. P.F. Thomason, Ductile Fracture of Metals, Pergamon Press, Oxford (1990).

    Google Scholar 

  26. K.S. Zhang and Ch.Q. Zheng, Acta Mechanica Sinica 7 (1991) 243–250.

    Google Scholar 

  27. J.W. Hancock and A.C. Mackenzie, Journal of Mechanics and Physics of Solids 24 (1976) 141–169.

    Google Scholar 

  28. P.J. Budden and M.R. Jones, Fatigue and Fracture of Engineering Materials and Structures 14 (1991) 469–482.

    Google Scholar 

  29. M. Zheng, X. Zheng and Z.J. Luo, International Journal of Fracture 56 (1992) R61-R65.

    Google Scholar 

  30. M. Zheng and X. Zheng, Theoretical and Applied Fracture Mechanics 18 (1993) 157–161.

    Google Scholar 

  31. T.-J. Wang, International Journal of Fracture 54 (1992) R23-R29.

    Google Scholar 

  32. S.R. Gunawardena, S. Jansson and F.A. Leckie, in Failure Mechanisms in High Temperature Composite Materials, G.K. Haritos, G. Newaz and Sh. Mall (eds.), AD Vol. 22, AMD Vol. 122, American Society of Mechanical Engineers, New York (1991) 23–30.

    Google Scholar 

  33. E. Weissenbek and F.G. Rammerstofer, Acta Metallurgica et Materialia 41 (1993) 2833–2843.

    Google Scholar 

  34. J. Sun, Z.-J. Deng and M.-J. Tu, Engineering Fracture Mechanics 39 (1991) 1051–1060.

    Google Scholar 

  35. P.E. Magnusen, E.M. Dubensky and D.A. Koss, Acta Metallurgica 36 (1988) 1503–1509.

    Google Scholar 

  36. N.L. Dung, in Anisotropy and Localization of Plastic Deformation, J.-P. Boehler and A.S. Khan (eds.), Elsevier Applied Science, London and New York (1977) 607–610.

    Google Scholar 

  37. N.L. Dung, Mechanics Research Communications 19 (1992) 227–235.

    Google Scholar 

  38. N.L. Dung, Mechanics Research Communications 19 (1992) 341–350.

    Google Scholar 

  39. T.-J. Wang, International Journal of Fracture 57 (1992) R3-R6.

    Google Scholar 

  40. X. Kong, N. Schlüter and J. Arndt, Steel Research 64 (1993) 401–406.

    Google Scholar 

  41. P.W. Bridgeman, in Studies in Large Plastic Fracture, McGraw-Hill, New York (1952) 1–37.

    Google Scholar 

  42. N. Bonora, M. Marchetti, C. Maricchiolo, P.P. Milella and A. Pini, in Advances in Fracture/Damage Models for the Analysis of Engineering Problems, AMD Vol. 137, American Society of Mechanical Engineers, New York (1992) 217–231.

    Google Scholar 

  43. J.-Q. Wu, Engineering Fracture Mechanics 41 (1992) 1–5.

    Google Scholar 

  44. J. do Amaral Cintra, Engineering Fracture Mechanics 40 (1991) 45–57.

    Google Scholar 

  45. H.-P. Stüwe, Archiv für das Eisenhüttenwesen 4 (1963) 633–640.

    Google Scholar 

  46. ABAQUS 1993 Theory Manual Version 5.2, Hibbitt, Karlsson and Sorensen, Pawtucket, RI, USA.

  47. M.H. Poech and H.F. Fischmeister, Engineering Fracture Mechanics 43 (1992) 581–588.

    Google Scholar 

  48. F.G. Rammerstorfer, Th. Reiter and I. Skrna-Jakl, ILFB-Report ERNE, TU Wien, (1992).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Franz Kollmann, Darmstadt, on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, F.D., Kolednik, O., Shan, G.X. et al. A note on calibration of ductile failure damage indicators. Int J Fract 73, 345–357 (1995). https://doi.org/10.1007/BF00027274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027274

Keywords

Navigation