Skip to main content
Log in

Acidification history and crustacean remains: some ecological obstacles

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Crustacean remains are not yet useful as parameters for assessing the recent acidification phenomenon, due to too few studies on their ecology. The changes observed in the sediments are related not just to changes in lake chemistry, but also to predatory and competitive interactions. Moreover, the habitat pH of the organism may differ from the measured lake pH, and may as such not be representative. Therefore, species in some acidic lakes may decrease their abundance, whereas the same species in nearby acidic lakes increase. The caution mainly concerns species with no clear pH distribution. Species predominant in acidic or alkaline lakes generally follow patterns more closely related to their physiology. Study of pelagic species, including both body size and shape measurements, should be included in the analysis. If all the ecological factors are included, animal as well as algal remains would form powerful tools to reveal lake histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. r. Soc. Lond B 305: 451–477.

    Google Scholar 

  • Brambilla, D. J., 1982. Seasonal variation of egg size and number in a Daphnia pulex population. Hydrobiologia 97: 233–248.

    Google Scholar 

  • Chengalath, R., 1982. A faunistic and ecological survey of the littoral Cladocera of Canada. Can. J. Zool. 60: 2668–2682.

    Google Scholar 

  • Chengalath, R., 1985, in press. The distribution of chydorid Cladocera in Canada. Dev. Hydrobiol.

  • Crisman, T. L., 1980. Chydorid cladoceran assemblages from subtropical Florida. pp. 657–668, In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England.

  • Cotten, C. A., 1985, in press. Remains of non-chydorid cladocerans from surficial sediments in eastern Finnish lakes. Dev. Hydrobiol.

  • Deevey, E. S. jr., 1964. Preliminary account of fossilization in Rogers Lake. Verh. int. Ver. Limnol. 15: 981–992.

    Google Scholar 

  • Frey, D. G., 1979. Cladoceran analysis. In Paleolimnological changes in the temperate zone in the last 15000 years. IGCP project 158B, Lake and mire environments, Vol. II pp. 227–257. Lund.

  • Frey, D. G., 1982. Questions concerning cosmopolitanism in Cladocera. Arch. Hydrobiol. 93: 484–502.

    Google Scholar 

  • Frey, D. G., 1985, in press. The taxonomy and biogeography of Cladocera. Dev. Hydrobiol.

  • Goulden, C. E., 1964. The history of the cladoceran fauna of Esthwaite Water (England) and its limnological significance. Arch. Hydrobiol. 60: 1–52.

    Google Scholar 

  • Goulden, C. E., 1971. Environmental control of the abundance and distribution of the chydorid Cladocera. Limnol. Oceanogr. 16: 320–331.

    Google Scholar 

  • Hindar, A. & J. P. Nilssen, 1984 (eds). Årsrapport, Gjerstad 1982/84. Rep. Norw. Liming Project 1980–84, Rep. 21: 1–124.

  • Hofmann, W., 1984. Postglacial morphological variation in Bosmina longispina Leydig (Crustacea, Cladocera) from the Grosser Plöner See (north Germany) and its taxonomical implications. Z. zool. Syst. Evol. forsch. 22: 294–301.

    Google Scholar 

  • Keen, R., 1976. Population dynamics of the chydorid Cladocera of a southern Michigan marl lake. Hydrobiologia 48: 269–276.

    Google Scholar 

  • Kerfoot, W. C., 1974. Egg-size cycle of a cladoceran. Ecology 56: 1259–1270.

    Google Scholar 

  • Kerfoot, W. C., 1975. The divergence of adjacent populations. Ecology 56: 1298–1313.

    Google Scholar 

  • Kerfoot, W. C., 1981. Long-term replacement cycles in cladoceran communities: A history of predation. Ecology 62: 216–233.

    Google Scholar 

  • Kitchell, J. A. & J. F. Kitchell, 1980. Size-selective predation, light transmission, and oxygen stratification: Evidence from the recent sediments of manipulated lakes. Limnol. Oceanogr. 25: 389–402.

    Google Scholar 

  • Krause-Dellin, D. & C. Steinberg, 1984. Evidence of lake acidification by a novel biological pH-meter. Envir. Tech. Letts 5: 403–406.

    Google Scholar 

  • Lynch, M., 1980. The evolution of cladoceran life histories. Quart. Rev. Biol. 55: 23–42.

    Google Scholar 

  • Nilssen, J. P., 1976. Community analysis and altitudinal distribution of limnetic Entomostraca from different areas in southern Norway. Pol. Arch. Hydrobiol. 23: 105–122.

    Google Scholar 

  • Nilssen, J. P., 1978. Selective vertebrate and invertebrate predation — some paleolimnological implications. Pol. Arch. Hydrobiol. 25: 307–320.

    Google Scholar 

  • Nilssen, J. P., 1984. An ecological jig-saw puzzle: reconstructing aquatic biogeography and pH in an acidified region. Res. Rep. Freshwat. Inst. Drottningholm 61: 139–147.

    Google Scholar 

  • Nilssen, J. P., T. Østdahl & W. T. W. Potts, 1984. Species replacements in acidified lakes: physiology, predation or competition. Res. Rep. Freshwat. Inst. Drottningholm 61: 148–153.

    Google Scholar 

  • Potts, W. T. W. & G. Fryer, 1979. The effects of pH and salt content on sodium balance in Daphnia magna and Acantholeberis curvirostris. J. comp. Physiol. 129: 289–294.

    Google Scholar 

  • Paterson, M. J., 1984. Paleolimnological analysis of recently acidified lakes in the Adirondack mountains. Unpubl. Ph.D. thesis, Univ. Tenessee, Bloomington.

    Google Scholar 

  • Raddum, G. G., A. Hobæk, E. R. Lømsland & T. Johnsen, 1980. Phytoplankton and zooplankton in acidified lakes in south Norway. In D. Drabløs & A. Tollan, Ecological impact of acid precipitation, pp. 332–333, SNSF-Project, Ås-NLH.

  • Sandøy, S. & J. P. Nilssen, 1985, in press. A geographical survey of littoral Cladocera in Norway and their use in paleolimnology. Dev. Hydrobiol.

  • Sládeček, V., 1973. Water quality measurements from the biological point of view. Ergeb. Limnol. 3: 1–273.

    Google Scholar 

  • Straškrába, M., 1963. The share of the littoral region in the productivity of two fishponds in southern Bohemia. Rožpr. Česk. Akad. Véd Řada. Mat. Priř. Véd 73: 3–61.

    Google Scholar 

  • Straškrába, M., 1965. The effect of fish on the number of invertebrates in ponds and streams. Mitt. int. Ver. Limnol. 13: 106–127.

    Google Scholar 

  • Straškrába, M., 1967. Quantitative study on the littoral zooplankton of the Poltruba backwater with an attempt to disclose the effect on fish. Rožpr. Česk. Akad. Véd Řada. Mat. Priř. Véd 77: 7–34.

    Google Scholar 

  • Uimonen-Simola, P., 1985, in press. Cladocera in small Finnish lakes. Dev. Hydrobiol.

  • Williams, J. B., 1982. Temporal and spatial patterns of abundance of the Chydoridae (Cladocera) in Lake Itasca, Minnesota. Ecology 63: 345–353.

    Google Scholar 

  • Whiteside, M. C., 1970. Danish chydorid Cladocera: modern ecology and core studies. Ecol. Monogr. 40: 79–118.

    Google Scholar 

  • Whiteside, M. C., J. B. Williams & C. P. White, 1978. Seasonal abundance and pattern of chydorid Cladocera in mud and vegetative habitats. Ecology 59: 1177–1188.

    Google Scholar 

  • Whiteside, M. C. & M. R. Swindoll, in press. Guidelines and limitations to cladoceran paleoecological interpretations. Paleogeography, paleoclim. paleoecol.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilssen, J.P., Sandøy, S. Acidification history and crustacean remains: some ecological obstacles. Hydrobiologia 143, 349–354 (1986). https://doi.org/10.1007/BF00026682

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026682

Keywords

Navigation