Skip to main content
Log in

Heterotrophic bacterial activity in Roskilde Fjord sediment during an autumn sedimentation peak

  • Microbial processes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Total oxygen uptake, bacterial oxygen uptake, total bacterial biomass and active bacterial biomass were determined at the sediment-water interface at two stations in the brackish Roskilde Fjord between September and December in 1986 before, during and after sedimentation of a phytoplankton bloom. Bacterial oxygen consumption was separated from total oxygen consumption by addition of cycloheximide. The fractional and the absolute bacterial oxygen uptake were greatest at the most eutrophic station, where total oxygen uptake was 870–1740 mg O2 m−2 d−1 and the bacterial oxygen uptake was 232–870 mg O2 m−2 d−1. At the less eutrophic station, total oxygen uptake was 725–1740 mg O2 m−2 d−1. and bacterial oxygen uptake was 200–550 mg O2 m−2 d−1.

Active bacterial biomass was separated from total bacterial biomass by addition of the terminal electron acceptor INT-formazan. The active bacterial biomass was 70–120 µg C mg−1 ww of sediment at the most eutrophic station and 50–90 µg C g−1 ww of sediment at the other station. Differences in capacity of bacterial oxygen uptake between the two stations correlated to the active bacterial biomass. The non-temperature dependent bacterial oxygen uptake correlated with the sedimentation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayala, F. J. & J. A. Kiger, 1980. Modern Genetics. The Benjamin/Cummings Publishing Comp., Inc. Menlo Park, California, USA.

    Google Scholar 

  • Bjørnsen, P. K., 1986. Automatic determination of bacterioplankton biomass by image analyses. Appl. Envir. Microbiol. 51: 1199–1204.

    Google Scholar 

  • Boström, B. & E. Törnblom, 1991. Bacterial production, heat production and ATP-turnover in shallow marine sediments. Thermochimica Acta (submitted)

  • Bratbak, G. & I. Dundras, 1984. Bacterial dry matter content and biomass estimation. Appl. envir. Microbiol. 48: 755–757.

    Google Scholar 

  • Campbell, L. & E. J. Carpenter, 1986. Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the seawater dilution and selective inhibitor techniques. Mar. Ecol. Prog. Ser. 33: 121–129.

    Google Scholar 

  • Graf, G., R. Schulz, R. Peinert & L.-A. Meyer-Reil, 1983. Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight. I. Analysis of processes on a community level. Mar. Biol. 77: 235–246.

    Google Scholar 

  • Graf, G., 1987. Benthic energy flow during a simulated autumn bloom sedimentation. Mar. Ecol. Prog. Ser. 39: 23–29.

    Google Scholar 

  • Hargrave, B. T., 1969. Epibentic algal production and community respiration in the sediments of Marion Lake. J. Fish. Res. Bd Can. 26: 2003–2026.

    Google Scholar 

  • Ingraham, J., O. Maaløe & F. C. Neidhardt, 1983. Growth of the Bacterial Cell. Sinauer Associates Inc. Sunderland, MA 01375.

    Google Scholar 

  • Jensen, L. M., K. Sand-Jensen, S. Marcher & M. Hansen, 1990. Plankton community respiration along a nutrient gradient in a shallow Danish estuary. Mar. Ecol. Prog. Ser. 61: 75–85.

    Google Scholar 

  • Jørgensen, B. B. & J. Sørensen, 1985. Seasonal cycles of O2, NOf3 p− and SOf4 p2− reduction in estuarine sediments: the significance of an NOf3 p− reduction maximum in spring. Mar. Ecol. Prog. Ser. 24: 65–74.

    Google Scholar 

  • Kamp-Nielsen, L., 1992. Benthic-pelagic coupling of nutrient metabolism along an estuarine eutrophication gradient. Hydrobiologia 235/236: 457–470.

    Google Scholar 

  • Kanneworff, E. & W. Nicolaisen, 1973. The ‘Haps’, a frame supported bottom corer. Ophelia 10: 119–128.

    Google Scholar 

  • Kanneworff E. & H. Christensen, 1986. Benthic community respiration in relation to sedimentation of phytoplankton in the Øresund. Ophelia 26: 269–289.

    Google Scholar 

  • Kelly, J. R. & S. W. Nixon, 1984. Experimental studies of the effect of organic deposition on the metabolism of a coastal marine bottom community. Mar. Ecol. Prog. Ser. 17: 157–169.

    Google Scholar 

  • Kogure, K., U. Smidu & N. Taga, 1984. An improved direct viable count method for aquatic bacteria. Arch. Hydrobiol. 121: 117–122.

    Google Scholar 

  • Limnologisk metodik, 1987. Ferskvandsbiologisk Laboratorium, Københavns Universitet (ed.) Akademisk Forlag, København, 172 pp.

    Google Scholar 

  • Luria, S. E., 1960. The Bacterial Protoplasm: Composition and Organization, p. 1–34. In I. C. Gunsalus & R. Y. Stanier (ed.), The Bacteria, vol. 1. Academic Press, Inc., New York.

    Google Scholar 

  • Meyer-Reil, L.-A., 1978. Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. envir. Microbiol. 36: 506–512.

    Google Scholar 

  • Meyer-Reil, L.-A., 1983. Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight. II. Analysis of benthic bacterial populations. Mar. Biol. 77: 247–256.

    Google Scholar 

  • Sand-Jensen, K., L. M. Jensen, S. Marcher & M. Hansen, 1990. Pelagic metabolism in eutrophic coastal waters during a late summer period. Mar. Ecol. Prog. Ser. 65: 63–72.

    Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1986. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion. Appl. envir. Microbiol. 52: 101–107.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr, T. L. Andrew, R. D. Fallon & S. Y. Newell, 1986. Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analyzed selective metabolic inhibitors. Mar. Ecol. Prog. Ser. 32: 169–179.

    Google Scholar 

  • Smith, K. L., 1973. Respiration of a sublittoral community. Ecology 54: 1065–1075.

    Google Scholar 

  • Søndergaard, M., B. Riemann & N. O. G. Jørgensen, 1985. Extra-cellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos. 45: 323–332.

    Google Scholar 

  • Tabor, P. S. & R. A. Neihof, 1982. Improved method for determination of respiring individual microorganisms in natural waters. Appl. envir. Microbiol. 43: 1249–1255.

    Google Scholar 

  • Taylor, G. T. & M. L. Pace, 1987. Validity of eucariote inhibitors for assessing production and grazing mortality of marine bacterioplankton. Appl. envir. Microbiol. 53: 119–128.

    Google Scholar 

  • Tison, D. L., D. H. Pope & C. W. Boylen, 1980. Influence of seasonal temperature on the temperature optime of bacteria in sediments of Lake George, New York. Appl. envir. Microbiol. 39: 675–677.

    Google Scholar 

  • Tremaine, S. C. & A. L. Mills, 1987. Inadequacy of the eucaryote inhibitor cycloheximide in studies of protozoan grazing on bacteria at the freshwater-sediment interface. Appl. envir. Microbiol. 53: 1969–1972.

    Google Scholar 

  • Trevors, J. T., 1985. Electron transport system activity in soil, sediment and pure cultures. CRC Critical Reviews in Microbiology. Vol. 2: 83–100.

    Google Scholar 

  • Van Veen, J. A. & E. A. Paul, 1979. Conversion of biovolume measurements of soil organisms, grown under various moisture tension, to biomass and their nutrient content. Appl. envir. Microbiol. 37: 686–692.

    Google Scholar 

  • Yetka, J. E. & W. J. Wiebe, 1974. Ecological application of antibiotics as respiratory inhibitors of bacterial populations. Appl. envir. Microbiol. 28: 1033–1039.

    Google Scholar 

  • Zimmermann, R., R. Ituuiaga & J. Becker-Birk, 1978. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. envir. Microbiol. 36: 926–935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flindt, M.R., Nielsen, J.B. Heterotrophic bacterial activity in Roskilde Fjord sediment during an autumn sedimentation peak. Hydrobiologia 235, 283–293 (1992). https://doi.org/10.1007/BF00026220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026220

Key words

Navigation