Skip to main content
Log in

Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance

  • Annual and seasonal cycles
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A considerable portion of the pelagic energy flow in Lake Constance (FRG) is channelled through a highly dynamic microbial food web. In-situ experiments using the lake water dilution technique according to Landry & Hasset (1982) revealed that grazing by heterotrophic nanoflagellates (HNF) smaller than 10 µm is the major loss factor of bacterial production. An average flagellate ingests 10 to 100 bacteria per hour. Nano- and micro-ciliates have been identified as the main predators of HNF. If no other food is used between 3 and 40 HNF are consumed per ciliate and hour. Other protozoans and small metazoans such as rotifers are of minor importance in controlling HNF population dynamics.

Clearance rates varied between 0.2 and 122.8 nl HNF−1 h−1 and between 0.2 and 53.6 µl ciliate−1 h−1, respectively.

Ingestion and clearance rates measured for HNF and ciliates are in good agreement with results obtained by other investigators from different aquatic environments and from laboratory cultures. Both the abundance of all three major microheterotrophic categories — bacteria, HNF, and ciliates — and the grazing pressure within the microbial loop show pronounced seasonal variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1986. Bacterial grazing by planktonic algae. Science 231: 493–495.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    Google Scholar 

  • Bloem, J. & M.-J. B. Bär-Gilissen, 1989. Bacterial activity and protozoan grazing potential in a stratified lake. Limnol. Oceanogr. 34: 297–309.

    Google Scholar 

  • Bloem, J., F. M. Ellenbroek, M.-J. B. Bär-Gilissen & T. E. Cappenberg, 1989. Protozoan grazing and bacterial production in stratified Lake Vechten estimated with fluorescently labeled bacteria and by thymidine incorporation. Appl. Environ. Microbiol. 55: 1787–1795.

    Google Scholar 

  • Campbell, L. & E. J. Carpenter, 1986. Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the sea water dilution and selective inhibitor techniques. Mar. Ecol. Prog. Ser. 33: 121–129.

    Google Scholar 

  • Capriulo, G. M., 1982. Feeding of field collected tintinnid micro-zooplankton on natural food. Mar. Biol. 71: 73–86.

    Google Scholar 

  • Davis, P. G. & J. McN. Sieburth, 1984. Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria. Mar. Ecol. Prog. Ser. 19: 237–246.

    Google Scholar 

  • Estep, K. W., P. G. Davis, M. D. Keller & J. McN. Sieburth, 1986. How important are algal nanoflagellates in bacterivory? Limnol. Oceanogr. 31: 646–650.

    Google Scholar 

  • Fenchel, T., 1980. Suspension feeding in ciliated Protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.

    Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.

    Google Scholar 

  • Geller, W., 1980. Stabile Zeitmuster in der Plankton-succession des Bodensees (Überlinger See). Verh. Ges. Ökol. 8: 373–387.

    Google Scholar 

  • Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia (Berl.) 49: 316–321.

    Google Scholar 

  • Gophen, M. & W. Geller, 1984. Filter mesh size and food particle uptake by Daphnia. Oecologia (Berl.) 64: 408–412.

    Google Scholar 

  • Güde, H., 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J. Plankton Res. 8: 795–810.

    Google Scholar 

  • Güde, H., 1988. Direct and indirect influences of crustacean zooplankton on bacterioplankton in Lake Constance. Hydrobiologia 159: 63–73.

    Google Scholar 

  • Heinbokel, J. F., 1978a. Studies on the functional role of tintinnids in the southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177–189.

    Google Scholar 

  • Heinbokel, J. F., 1978b. Studies on the functional role of tintinnids in the southern California Bight. II. Grazing rates of field populations. Mar. Biol. 47: 191–197.

    Google Scholar 

  • Jürgens, K. & H. Güde, 1990. Seasonal changes in the grazing impact of phagotrophic flagellates on bacteria in Lake Constance. Marine Microbial Food Webs: (in press).

  • Lampert, W., 1978. Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal blooms and extremely clear water in Lake Constance. Verh. int. Ver. Limnol. 20: 969–974.

    Google Scholar 

  • Landry, M. R. & R. P. Hasset, 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283–288.

    Google Scholar 

  • Landry, M. R., L. W. Haas & V. L. Fagerness, 1984. Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16: 127–133.

    Google Scholar 

  • Müller, H., 1989. The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18: (in press).

  • Müller, H., W. Geller & A. Schöne, 1990. Pelagic ciliates in Lake Constance: Comparison of epilimnion and hypolimnion. Verh. int. Ver. Limnol. 24: (in press).

  • Pomeroy, L. R., 1974. The ocean's food web. A changing paradigm. Bio Science 24: 499–504.

    Google Scholar 

  • Pomeroy, L. R., 1984. Significance of microorganisms in carbon and energy flow in marine ecosystems. In M. J. Klug & C. A. Reddy (eds.), Current perspectives in microbial ecology. American Society for Microbiology, Washington, D.C.: 405–411.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace & R. W. Sanders, 1985. Protozoa in planktonic food webs. J. Protozool. 32: 409–415.

    Google Scholar 

  • Rivier, A., D. C. Brownlee, R. W. Sheldon & F. Rassoulzadegan, 1985. Growth of microzooplankton: a comparative study of bacterivorous zooflagellates and ciliates. Mar. Microb. Food Webs 1: 51–60.

    Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1986. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic lake with an anaerobic hypolimnion. Appl. envir. Microbiol. 52: 101–107.

    Google Scholar 

  • Sheldon, R. W., P. Nival & F. Rassoulzadegan, 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol. Oceanogr. 31: 184–188.

    Google Scholar 

  • Sherr, B. F. & E. B. Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In M. J. Klug & C. A. Reddy (eds.), Current perspectives in microbial ecology. American Society for Microbiology, Washington, D.C.: 412–423.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. envir. Microbiol. 45: 1196–1201.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & S. Y. Newell, 1984. Abundance and productivity of heterotrophic nanoplankton in Georgia coastal waters. J. Plankton Res. 6: 195–202.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr, T. L. Andrew, R. D. Fallon & S. Y. Newell, 1986. Trophic interactions between heterotrophic Protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors. Mar. Ecol. Prog. Ser. 32: 169–179.

    Google Scholar 

  • Sherr, E. B., F. Rassoulzadegan & B. F. Sherr, 1989. Bacterivory by pelagic choreotrichous ciliates in coastal waters of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 55: 235–240.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr & G.-A. Paffenhöfer, 1986. Phagotrophic Protozoa as food for metazoans: a ‘missing’ trophic link in marine pelagic food webs? Mar. Microb. Food Webs 1: 61–80.

    Google Scholar 

  • Simon, M., 1987. Biomass and production of small and large free-living and attached bacteria in Lake Constance. Limnol. Oceanogr. 32: 591–607.

    Google Scholar 

  • Simon, M. & F. Azam, 1988. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 48: (in press).

  • Spittler, P., 1973. Feeding experiments with tintinnids. Oikos (Suppl.) 15: 128–132.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Verity, P. G., 1985. Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr. 30: 1268–1282.

    Google Scholar 

  • Verity, P. G., 1986a. Grazing of phototrophic nanoplankton by microzooplankton in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 105–115.

    Google Scholar 

  • Verity, P. G., 1986b. Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117–126.

    Google Scholar 

  • Verity, P. G. & T. A. Villareal, 1986. The relative food value of diatoms, dinoflagellates, flagellates, and cyanobacteria for tintinnid ciliates. Arch. Protistenkd. 131: 71–84.

    Google Scholar 

  • Weisse, T., 1988. Dynamics of autotrophic picoplankton in Lake Constance. J. Plankton Res. 10: 1179–1188.

    Google Scholar 

  • Weisse, T., 1989. The microbial loop in the Red Sea: dynamics of pelagic bacteria and heterotrophic nanoflagellates. Mar. Ecol. Prog. Ser. 55: 241–250.

    Google Scholar 

  • Weisse, T. & Müller, H., 1989. Significance of heterotrophic nanoflagellates and ciliates in large lakes: evidence from Lake Constance. In M. M. Tilzer & C. Serruya (eds.), Functional and structural properties of large lakes. Science Tech. Publ.,Madison, WI: (in press).

    Google Scholar 

  • Weisse, T. & A. Schweizer, 1990. Seasonal and interannual variation of autotrophic picoplankton in a large prealpine lake (Lake Constance). Ver. int. Ver. Limnol. 24: (in press).

  • Williams, P. J. LeB., 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web.. Kieler Meeresforsch., Sonderh. 5: 11–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisse, T. Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance. Hydrobiologia 191, 111–122 (1990). https://doi.org/10.1007/BF00026045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026045

Key words

Navigation