Skip to main content
Log in

Diet, intestinal morphology, and nitrogen assimilation efficiency in the damselfish, Stegastes lividus, in Guam

  • Full paper
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Analysis of stomach contents of Stegastes lividus revealed a shift from omnivory in juveniles to herbivory in adults. Red algae, primarily Polysiphonia spp., Gelidiopsis intricata and Ceramium spp., formed the bulk of the diet in all size classes. Foraminifera and small crustaceans were of particular importance in the diet of juveniles. Net nitrogen assimilation efficiency of field-fed S. lividus was approximately 61%, and did not vary with fish size. The net assimilation efficiencies of fish fed on Enteromorpha in the laboratory ranged from size-class means of 36–79% for nitrogen and from 29–72% for total organic material, and increased from juveniles to adults. Apparently, juveniles compensate for a lower efficiency in assimilating plant food by including a higher percentage of animal material in their natural diets. The ratios of intestine length to standard length (IL/SL) and to intestine diameter (IL/ID) increased rapidly in juveniles and leveled off in adults. The retention time for ingested food items may only be about one-half as long in juveniles as in adults. The combination of observed IL/ID ratios and estimated retention times proved most valuable in the interpretation of ontogenetic changes in feeding habits and assimilation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Alevizon, W.S. 1975. Comparative feeding ecology of a kelp-bed embiotocid (Embiotoca lateralis). Copeia 1975: 608–615.

  • Al-Hussaini, A.H. 1947. The feeding habits and the morphology of the alimentary tract of some teleosts. Publ. Mar. Biol. Stn. Ghardaqa 5. 1–61.

    Google Scholar 

  • Al-Hussaini, A.H. 1949. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits: anatomy and histology. Quart. J. Microscop. Sci. 90: 109–139.

    Google Scholar 

  • Bakus, G. 1964. The effects of fish grazing on invertebrate evolution in shallow tropical waters. Allan Hancock Found. Occ. Pap. 27: 1–29.

    Google Scholar 

  • Barrington, E.J.W. 1957. The alimentary canal and digestion. pp. 109–161. In: M.E. Brown (ed.) The Physiology of Fishes, Vol. 1, Academic Press, New York.

  • Belk, M.S. 1975. Habitat partitioning in two tropical reef fishes, Pomacentrus lividus and P. albofasciatus. Copeia 1975: 603–607.

  • Bondi, A., A. Spandorf & R. Chalmi. 1957. The nutritive value of various feeds for carp. Bamidgeh 9: 13–18.

    Google Scholar 

  • Boyd, C.E. & C.P. Goodyear. 1971. Nutritive quality of food in ecological systems. Arch. Hydrobiol. 69: 256–270.

    Google Scholar 

  • Brawley, S.H. & W.H. Adey. 1977. Territorial behavior of threespot damselfish (Eupomacentrus planifrons) increases reef algal biomass and productivity. Env. Biol. Fish. 2: 45–51.

    Google Scholar 

  • Bryan, P.G. 1975. Food habits, functional digestive morphology and assimilation efficiency of the rabbitfish, Siganus spinus (Pisces: Siganidae) on Guam. Pac. Sci. 29: 269–277.

    Google Scholar 

  • Buddington, R.K. 1979. Digestion of an aquatic macrophyte by Tilapia zillii (Gervais). J. Fish Biol. 15: 449–455.

    Google Scholar 

  • Chiang, L'Kuei, et al. 1966. Collected articles on the 7th Conference of the Committee of Fishery Research of the West Pacific, Hydrobiology Institute, pp. 84–94. Chinese Academy of Science, Peking.

    Google Scholar 

  • Christensen, M.S. 1978. Trophic relationships of three species of sparid fishes in the South African marine littoral. U.S. Fish. Bull. 76: 389–401.

    Google Scholar 

  • Ciardelli, A. 1967. The anatomy of the feeding mechanism and the food habits of Microspathodon chrysurus (Pisces: Pomacentridae). Bull. Mar. Sci. 17: 845–883.

    Google Scholar 

  • Clark, D.B. & J.W. Gibbons. 1969. Dietary shift in the turtle Pseudomys scripta (Schoepft) from youth to maturity. Copeia 1969: 704–706.

  • Clarke, T.A. 1971. Territory boundaries, courtship, and social behavior in the garibaldi, Hypsypops rubicunda (Pomacentridae). Copeia 1971: 295–299.

  • Condrey, P.E., J.G. Gosselink & H.J. Bennett. 1972. Comparison of the assimilation of different diets by Penaeus setiferus and P. aztecus. U.S. Fish. Bull. 70: 1281–1299.

    Google Scholar 

  • Conover, R.J. 1966. Assimilation of organic matter by zooplankton. Limnol. Oceanogr. 11: 338–345.

    Google Scholar 

  • Ebersole, J.P. 1977. The adaptive significance of interspecific territoriality in the reef fish Eupomacentrus leucostictus. Ecology 58: 914–920.

    Google Scholar 

  • Edwards, T.W. & M.H. Horn. 1982. Assimilation efficiency of a temperate-zone intertidal fish (Cebidichthys violaceus) fed diets of macroalgae. Mar. Biol. 67: 247–253.

    Google Scholar 

  • Emery, A.R. 1973. Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. Mar. Sci. 23: 649–770.

    Google Scholar 

  • Fitzgerald, W.J., Jr. 1978. Environmental parameters influencing the growth of Enteromorpha clathrata in the intertidal zone on Guam. Bot. Mar. 21: 207–220.

    Google Scholar 

  • Gohar, H.A.F. & A.F.A. Latif. 1959. Morphological studies on the gut of some scarid and labrid fishes. Publ. Mar. Biol. Stn. Ghardaqa (Red Sea) 10: 145–189.

    Google Scholar 

  • Hiatt, R.W. & D.S. Strasburg. 1960. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol. Monogr. 30: 65–127.

    Google Scholar 

  • Hickling, C.F. 1966. On the feeding process in the white amur (Ctenopharyngodon idella). J. Zool. 148: 408–419.

    Google Scholar 

  • Hickling, C.F. 1971. Fish culture. Faber and Faber, London. 295 pp.

    Google Scholar 

  • Hobson, E.S. 1974. Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. U.S. Fish. Bull. 72: 915–1031.

    Google Scholar 

  • Hynes, H.B.N. 1950. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius) with a review of methods used in studies of food of fishes. J. Anim. Ecol. 19: 36–58.

    Google Scholar 

  • Hyslop, E.J. 1980. Stomach content analysis — a review of methods and their application. J. Fish. Biol. 17: 411–429.

    Google Scholar 

  • Jones, R.S. 1968. Ecological relationships in Hawaiian and Johnston Island Acanthuridae (Surgeonfishes). Micronesica 4: 309–361.

    Google Scholar 

  • Klust, G. 1939. Über Entwicklung, Bau und Funktion des Darmes bei Karpfen (Cyprinus carpio L.). Intern. Rev. ges. Hydrobiol. Hydrog. 39: 498–176, 40: 88.

    Google Scholar 

  • Lassuy, D.R. 1980. Effects of ‘farming’ behavior in Eupomacentrus lividus and Hemiglyphidodon plagiometopon on algal community structure. Bull. Mar. Sci. 30: 304–312.

    Google Scholar 

  • Lobel, P.S. 1981. Trophic biology of herbivorous reef fishes: alimentary pH and digestive capabilities. J. Fish. Biol. 19: 365–397.

    Google Scholar 

  • Low, R.M. 1971. Interspecific territoriality in a pomacentrid reef fish, Pomacentrus flavicauda Whitley. Ecology 52: 648–654.

    Google Scholar 

  • Mann, H. 1966. The utilization of food by Tilapia melanopleura, Dum. Proc. World Symp. Warm-water Pond Cult. FAO Repts. 44: 408–410.

    Google Scholar 

  • Mathavan, S., E. Vivekanandan & T.J. Pandian. 1976. Food utilization in the fish Tilapia mossambica fed on plant and animal foods. Helgolander wiss. Meeresunters. 28: 71–89.

    Google Scholar 

  • Menzel, D.W. 1959. Utilization of algae for growth by the angelfish, Holocanthus bermudensis. J. Cons. perm. int. Explor. Mer. 24: 308–313.

    Google Scholar 

  • Menzel, D.W. 1960. Utilization of food by a Bermuda reef fish, Epinephelus guttatus. J. Cons. perm. int. Explor. Mer. 25: 216–222.

    Google Scholar 

  • Mitchell, D.F. 1953. An analysis of stomach contents of California tide pool fishes. Amer. Midl. Nat. 49: 862–871.

    Google Scholar 

  • Montgomery, W.L. 1977. Diet and gut morphology in fishes, with special reference to the monkeyface prickleback, Cebidichthys violaceus (Stichaeidae: Blenniodidei). Copeia 1977: 178–182.

  • Montgomery, W.L. 1980. Comparative feeding ecology of two herbivorous damselfishes (Pomacentridae: Teleostei) from the Gulf of California, Mexico. J. Exp. Mar. Biol. Ecol. 47: 9–24.

    Google Scholar 

  • Montgomery, W.L. & R.E. Gerking. 1980. Marine macroalgae as foods for fishes: an evaluation of potential food quality. Env. Biol. Fish. 5: 143–153.

    Google Scholar 

  • Myrberg, A.A., Jr. & R.E. Thresher. 1974. Interspecific aggression and its relevance to the concept of territoriality in reef fishes. Amer. Zool. 41: 81–96.

    Google Scholar 

  • Ogden, J.C. & P.S. Lobel. 1978. The role of herbivorous fishes and urchins in coral reef communities. Env. Biol. Fish. 3: 49–63.

    Google Scholar 

  • Pandian, T.J. 1967. Intake, digestion, absorption and conversion of food in the fishes Megalops cyprinoides and Ophiocephalus striatus. Mar. Biol. 1: 16–32.

    Google Scholar 

  • Payne, A.I. 1978. Gut pH and digestive strategies in estuarine grey mullet (Mugilidae) and tilapia (Cichlidae). J. Fish Biol. 13: 627–629.

    Google Scholar 

  • Pfeffer, R. 1963. The digestion of algae by Acanthurus sandvicensis. Master's Thesis, University of Hawaii, Honolulu. 47 pp.

  • Pough, F.H. 1973. Lizard energetics and diet. Ecology 54: 837–844.

    Google Scholar 

  • Randall, J.E. 1961. A contribution to the biology of the convict surgeonfish of the Hawaiian Islands, Acanthurrus triostegus sandvicensis. Pac. Sci. 51: 215–272.

    Google Scholar 

  • Royce, W.F. 1972. Introduction to the fishery sciences. Academic Press, New York. 351 pp.

    Google Scholar 

  • Suyehiro, Y. 1941. A study of the digestive system and feeding habits of fish. Jap. J. Zool. 10: 1–303.

    Google Scholar 

  • Targett, T.E. 1979. The effect of temperature and body size on digestive efficiency in Fundulus heteroclitus (L.). J. Exp. Mar. Biol. Ecol. 79: 179–186.

    Google Scholar 

  • Thresher, R.E. 1976. Field analysis of the territoriality of the threespot damselfish, Eupomacentrus planifrons (Pomacentridae). Copeia 1976: 266–276.

  • Tsuda, R.T. & P.G. Bryan. 1973. Food preferences of juvenile Siganus rostrams and S. spinus on Guam. Copeia 1973: 604–606.

  • Tsuda, R.T. & H.T. Kami. 1973. Algal succession on artificial reefs in a marine lagoon environment on Guam. J. Phycol. 9: 260–264.

    Google Scholar 

  • Van Dyke, J.M. & D.L. Sutton. 1977. Digestion of duckweed (Lemna spp.) by the grass carp (Ctenopharyngodon idella). J. Fish Biol. 11: 273–278.

    Google Scholar 

  • Windell, J.T. 1967. Rates digestion in fishes. pp. 151–174. In: S.D. Gerking (ed.) Biological Basis of Freshwater Fish Production, Wiley, New York.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassuy, D.R. Diet, intestinal morphology, and nitrogen assimilation efficiency in the damselfish, Stegastes lividus, in Guam. Environ Biol Fish 10, 183–193 (1984). https://doi.org/10.1007/BF00001125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00001125

Keywords