Skip to main content

Role of Nanoparticles and Nanotherapeutics in the Diagnosis of Serious Zoonotic and Neurological Diseases

  • Chapter
  • First Online:
Theranostic Applications of Nanotechnology in Neurological Disorders

Abstract

Over the past few years, nanotechnology has emerged as a promising tool in the field of biomedical sciences for the diagnosis, treatment, and management of zoonotic diseases related to the central nervous system. Complicated pathogenesis of zoonotic diseases, blood-brain barrier, and unavailability of specified channels for drug delivery have made alternate treatment regimens more cumbersome and delayed, leading to increased prevalence of these diseases in different human and animal population settings. These zoonotic diseases also pose serious risks to global health and cause huge economic losses in developing countries by causing epidemics and pandemics. Nanomaterials or modified nanoformulations provide suitable prophylactic, preventive (antiviral, antibacterial, and antiparasitic), and functional outcomes to resolve chronic and acute infections. This technology has also been considered as the best alternative to antibiotics, antivirals, and antiparasitic drugs that promote resistance against viral, bacterial, and parasitic infections. These nanotherapeutics also provide timely solutions by avoiding unexpected further health risks to humans, animals, and the surrounding environment, thus ensuring biosafety in healthcare settings. Target-selected nano-materials such as metal nanoparticles, polymeric nanoparticles, nanoemulsions, liposomes, and nanocrystals are administered through various routes in animals and humans, and these nanoparticles bind or manipulate the specific cellular receptors in host cells and also guide drug molecules along the drug delivery pathways in the central nervous system. In this chapter, various currently used diagnostics and treatment regimens of nanotechnology have been discussed among different neurodegenerative diseases such as cerebral malaria, trypanosomiasis, rabies, and listeriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aditi, Shariff M (2019) Nipah virus infection: a review. Epidemiol Infect 147:e95. https://doi.org/10.1017/S0950268819000086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad W, Naeem MA, Akram Q et al (2021) Exploring rabies endemicity in Pakistan: major constraints & possible solutions. Acta Trop 221:106011

    Article  PubMed  Google Scholar 

  • Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D (2014) Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomedicine 9:795–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrosi A, Airo F, Merkoçi A et al (2010) Enhanced gold nanoparticle-based ELISA for a breast cancer biomarker. J Anal Chem 82(3):1151–1156

    Article  CAS  Google Scholar 

  • Banerjee S, Gupta N, Kodan P et al (2019) Nipah virus disease: a rare and intractable disease. Intractable Rare Dis Res 8(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal A, Gamal W, Wu X et al (2019) Evaluation of an adjuvanted hydrogel-based pDNA nanoparticulate vaccine for rabies prevention and immunocontraception. Nanomedicine 21:102049

    Article  CAS  PubMed  Google Scholar 

  • Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ben-Harari RR, Connolly MP et al (2019) High burden and low awareness of toxoplasmosis in the United States. J Postgrad Med 131(2):103–108

    Article  Google Scholar 

  • Bruno L, Nappo MA, Ferrari L et al (2022) Nipah virus disease: epidemiological, clinical, diagnostic and legislative aspects of this unpredictable emerging zoonosis. Animals 13(1):159

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary V (2022) Prospects of green nanotechnology for efficient management of neurodegenerative diseases. Front Nanotechnol 4:1055708. https://doi.org/10.3389/fnano.2022.1055708

    Article  Google Scholar 

  • Chaudhary V et al (2023) High-performance H2 sensor based on Polyaniline-WO3 nanocomposite for portable batteries and breathomics-diagnosis of irritable bowel syndrome. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.08.151

  • Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114(21):10869–10939. https://doi.org/10.1021/cr400532z

    Article  CAS  PubMed  Google Scholar 

  • Chhabra R, Tosi G, Grabrucker AM (2015) Emerging use of nanotechnology in the treatment of neurological disorders. Curr Pharm Des 21(22):3111–3130

    Article  CAS  PubMed  Google Scholar 

  • Cui D, Tian F, Coyer SR, Wang J, Pan B, Gao F, Chen J (2020) Recent advances in the development of functional nanosystems for cancer imaging and therapy. Adv Healthc Mater 9(23):2001417. https://doi.org/10.1002/adhm.202001417

    Article  Google Scholar 

  • Date AA, Joshi MD, Patravale VB (2007) Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 59(6):505–521

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782. https://doi.org/10.1038/nrd2614

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Caballero M, Fernández MR, Navarro S, Ventura S (2018) Prion-based nanomaterials and their emerging applications. Prion 12(5–6):266–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreaden EC, Austin LA, Mackey MA, El-Sayed MA (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3(4):457–478. https://doi.org/10.4155/tde.12.9

    Article  CAS  PubMed  Google Scholar 

  • Eiden M, Gedvilaite A, Leidel F, Ulrich RG, Groschup MH (2021) Vaccination with prion peptide-displaying polyomavirus-like particles prolongs incubation time in scrapie-infected mice. Virus 13(5):811

    Article  CAS  Google Scholar 

  • Falardeau J, Trmčić A, Wang S et al (2021) The occurrence, growth, and biocontrol of Listeria monocytogenes in fresh and surface-ripened soft and semisoft cheeses. Compr Rev Food Sci Food Saf 20(4):4019–4048

    Article  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20. https://doi.org/10.1021/nn900002m

    Article  CAS  PubMed  Google Scholar 

  • Gautam A (2022) Towards modern-age advanced sensors for the management of neurodegenerative disorders: current status, challenges and prospects. ECS Sensor Plus 1:042401

    Article  Google Scholar 

  • Gilch S, Schätzl HM (2009) Aptamers against prion proteins and prions. CMLS 66:2445–2455

    Article  CAS  PubMed  Google Scholar 

  • Glor SB, Edelhofer R, Grimm F, Deplazes P, Basso W et al (2013) Evaluation of a commercial ELISA kit for detection of antibodies against Toxoplasma gondii in serum, plasma and meat juice from experimentally and naturally infected sheep. Parasit Vectors 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh GX, Tan K, Ang SP, Wang F, Tchoyoson Lim CC (2020) Neuroimaging in zoonotic outbreaks affecting the central nervous system: are we fighting the last war? AJNR Am J Neuroradiol 41(10):1760–1767. https://doi.org/10.3174/ajnr.A6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grace D, Mutua FK, Ochungo P, Kruska RL, Jones K, Brierley L, Lapar ML, Said MY, Herrero MT, Phuc PM, Thao NB (2012) Mapping of poverty and likely zoonoses hotspots. International Livestock Research Institute

    Google Scholar 

  • Grace E, Asbill S, Virga K (2015) Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrob Agents Chemother 59(11):6677–6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, Langer R (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14(1):71–79. https://doi.org/10.1016/j.cbpa.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  • Idro R, Marsh K, John CC, Newton CR (2010) Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res 68(4):267–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Ironside JW, Ritchie DL, Head MW (2018) Prion diseases. Handb Clin Neurol 145:393–403

    Article  Google Scholar 

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6(4):715–728. https://doi.org/10.2217/nnm.11.19

    Article  CAS  PubMed  Google Scholar 

  • Kasalica A, Vuković V, Vranješ A, Memiši N et al (2011) Listeria monocytogenes in milk and dairy products. Biotechnol Anim Husb 27(3):1067–1082

    Article  Google Scholar 

  • Kayser O, Kiderlen AF (2003) Delivery strategies for antiparasitics. Expert Opin Investig Drugs 12:197–207

    Article  CAS  PubMed  Google Scholar 

  • Keller G, Binyamin O, Frid K, Saada A, Gabizon R (2019) Mitochondrial dysfunction in preclinical genetic prion disease: a target for preventive treatment? Neurobiol Dis 124:57–66

    Article  CAS  PubMed  Google Scholar 

  • Kerry RG, Malik S, Redda YT (2019) Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine 18:196–220

    Article  CAS  PubMed  Google Scholar 

  • Kouassi GK, Wang P, Sreevatan S, Irudayaraj J (2007) Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein assessment. Biotechnol Prog 23(5):1239–1244

    CAS  PubMed  Google Scholar 

  • Kumar J, Eraña H, López-Martínez E, Claes N, Martín VF, Solís DM, Bals S, Cortajarena AL, Castilla J, Liz-Marzán LM (2018) Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc Natl Acad Sci U S A 115(13):3225–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Lasic DD, Martin FJ, Mayhew E (1995) Stealth liposomes. Ann Biomed Eng 19:59s

    Google Scholar 

  • Lee KK, Karr SL Jr, Wong MM, Hoeprich PD (1979) In vitro susceptibilities of Naegleria fowleri strain HB-1 to selected antimicrobial agents, singly and in combination. Antimicrob Agents Chemother 16(2):217–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kim SY, Hwang KJ, Ju YR, Woo HJ (2013) Prion diseases as transmissible zoonotic diseases. Osong Public Health Res Perspect 4(1):57–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Luhr KM, Löw P, Taraboulos A, Bergman T, Kristensson K (2009) Prion adsorption to stainless steel is promoted by nickel and molybdenum. J Gen Virol 90(11):2821–2828

    Article  CAS  PubMed  Google Scholar 

  • McLauchlin J, Rees CE, Dodd CE (2013) Listeria monocytogenes and the genus Listeria. In: The prokaryotes: Firmicutes and Tenericutes. Springer, Berlin, pp 241–259

    Google Scholar 

  • Miller MB, Supattapone S (2011) Superparamagnetic nanoparticle capture of prions for amplification. J Virol 85(6):2813–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ (2012) Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc Natl Acad Sci U S A 109(4):1080–1085. https://doi.org/10.1073/pnas.1112648109

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosqueira VC, Loiseau PM, Bories C, Legrand P, Devissaguet JP, Barratt G (2004) Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother 48(4):1222–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Ray S, Thakur RS (eds) (2019) Nanotherapeutics: from laboratory to clinic. CRC Press

    Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003. https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  • Muro S (2012) Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 164(2):125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugesan S, Scheibel T (2020) Copolymer/clay nanocomposites for biomedical applications. Adv Funct Mater 30(17):1908101

    Article  CAS  Google Scholar 

  • Nightingale KK, Schukken YH, Nightingale CR, Fortes ED, Ho AJ, Her Z, Grohn YT, McDonough PL, Wiedmann M et al (2004) Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol 70(8):4458–4467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prayag K, Surve DH, Paul AT, Kumar S, Jindal AB (2020) Nanotechnological interventions for treatment of trypanosomiasis in humans and animals. Drug Deliv Transl 10:945–961

    Article  Google Scholar 

  • Robert-Gangneux F, Dardé ML et al (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. JCM 25(2):264–296

    CAS  Google Scholar 

  • Royal A et al (2023) A cost-effectiveness analysis of pre-exposure prophylaxis to avert rabies deaths in school-aged children in India. Vaccine 11(3):677

    Google Scholar 

  • Seidel JS, Harmatz P, Visvesvara GS, Cohen A, Edwards J, Turner J (1982) Successful treatment of primary amebic meningoencephalitis. N Engl J Med 306(6):346–348

    Article  CAS  PubMed  Google Scholar 

  • Sibanda T, Buys EM (2022) Listeria monocytogenes pathogenesis: the role of stress adaptation. Microorganisms 10(8):1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinah S, Sehgal R (2022) Nano-targeted drug delivery for parasitic infections. In: Emerging nanomaterials and nano-based drug delivery approaches to combat antimicrobial resistance. Elsevier, pp 395–424

    Chapter  Google Scholar 

  • Singh CK, Ahmad A (2018) Molecular approach for antemortem diagnosis of rabies in dogs. IJMR 147(5):513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AV, Patil R, Thombre DK, Gade WN (2013) Micro-nanopatterning as tool to study the role of physicochemical properties on cell–surface interactions. J Biomed Mat Res A 101(10):3019–3032

    Article  Google Scholar 

  • Skariah S, McIntyre MK, Mordue DG et al (2012) Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion. Parasitol Res 107:253–260

    Article  Google Scholar 

  • Slingenbergh J (2013) World Livestock 2013: changing disease landscapes. Food and Agriculture Organization of the United Nations (FAO)

    Google Scholar 

  • Taha BA et al (2023) Next-generation nanophotonic-enabled biosensors for intelligent diagnosis of SARS-CoV-2 variants. Sci Total Environ 880:163333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee BL, Ibarrola EML, Geschwind MD (2018) Prion diseases. Neurol Clin 36(4):865–897

    Article  PubMed  Google Scholar 

  • Thompson A, Kutz S (2019) Introduction to the special issue on ‘Emerging zoonoses and wildlife’. Int J Parasitol Parasites Wildl 9:322

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney M, Waggoner PS, Tan CP, Aubin K, Montagna RA, Craighead HG (2008) Prion protein detection using nanomechanical resonator arrays and secondary mass labeling. Anal Chem 80(6):2141–2148

    Article  CAS  PubMed  Google Scholar 

  • Vashist A, Manickam P, Raymond AD, Arias AY, Kolishetti N, Vashist A, Arias E, Nair M (2023) Recent advances in nanotherapeutics for neurological disorders. ACS Appl Bio Mater 6(7):2614–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vauthier C, Couvreur P (2007) Nanomedicines: a new approach for the treatment of serious diseases. J Biomed Nanotechnol 3(3):223–234

    Article  CAS  Google Scholar 

  • Walvekar P, Gannimani R, Govender T (2019) Combination drug therapy via nanocarriers against infectious diseases. Eur J Pharm Sci 127:121–141

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Hatcher KL, Bartz JC, Chen SG, Skinner P, Richt J, Liu H, Sreevatsan S (2011) Selection and characterization of DNA aptamers against PrPSc. Exp Biol Med 236(4):466–476

    Article  CAS  Google Scholar 

  • Yamashita F, Hashida M (2013) Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev 65(1):139–147

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xu F, Xu H, Aguilar ZP, Niu R, Yuan Y, Sun J, You X, Lai W, Xiong Y, Wan C et al (2013) Magnetic nano-beads based separation combined with propidium monoazide treatment and multiplex PCR assay for simultaneous detection of viable Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes in food products. Food Microbiol 34(2):418–424

    Article  CAS  PubMed  Google Scholar 

  • Zahir-Jouzdani F, Mottaghitalab F, Dinarvand M, Atyabi F (2018) siRNA delivery for treatment of degenerative diseases, new hopes and challenges. J Drug Deliv Sci Technol 45:428–441

    Article  CAS  Google Scholar 

  • Zhang Y, Qi S, Liu Z, Shi Y, Yue W, Yi C (2016) Rapid determination of dopamine in human plasma using a gold nanoparticle-based dual-mode sensing system. Mater Sci Eng C 61:207–213

    Article  CAS  Google Scholar 

  • Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, Ahmed T, Lip H, Rauth AM, Wu XY (2018) Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy—an illustration with firsthand examples. Acta Pharmacol Sin 39(5):825–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wazir, N. et al. (2023). Role of Nanoparticles and Nanotherapeutics in the Diagnosis of Serious Zoonotic and Neurological Diseases. In: Gautam, A., Chaudhary, V. (eds) Theranostic Applications of Nanotechnology in Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-99-9510-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9510-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9509-7

  • Online ISBN: 978-981-99-9510-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics