Skip to main content

Structural Properties of Associative Knowledge Graphs

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

This paper introduces a novel structural approach to constructing associative knowledge graphs. These graphs are composed of many overlapping scenes, with each scene representing a specific set of objects. In the knowledge graph, each scene is represented as a complete subgraph associating scene objects. Knowledge graph nodes represent various objects present within the scenes. The same object can appear in multiple scenes. The recreation of the stored scenes from the knowledge graph occurs through association with a given context, which includes some of the objects stored in the graph. The memory capacity of the system is determined by the size of the graph and the density of its synaptic connections. Theoretical dependencies are derived to describe both the critical graph density and the memory capacity of scenes stored in such graphs. The critical graph density represents the maximum density at which it is possible to reproduce all elements of the scene without errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit, D.J., Gutfreund, H., Sompolinsky, H.: Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55, 1530 (1985). https://doi.org/10.1103/PhysRevLett.55.1530

    Article  Google Scholar 

  2. Krotov, D., Hopfield, J.J.: Dense Associative Memory for Pattern Recognition (2016). http://arxiv.org/abs/1606.01164

  3. Demircigil, M., Heusel, J., Löwe, M., Upgang, S., Vermet, F.: On a model of associative memory with huge storage capacity. J. Stat. Phys. 168(2), 288–299 (2017). https://doi.org/10.1007/s10955-017-1806-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Ramsauer, H., et al.: Hopfield Networks is All You Need (2008). http://arxiv.org/abs/2008.02217

  5. Schlag, I., Irie, K., Schmidhuber, J.: Linear Transformers are Secretly Fast Weight Programmers (2021). https://doi.org/10.48550/ARXIV.2102.11174

  6. Vaswani, A., et al.: Attention is All You Need (2022). http://arxiv.org/abs/1706.03762. Accessed 21 Sept 2022

  7. Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks, 1 Paperback edn. MIT Press, Cambridge (1998)

    Google Scholar 

  8. TensorFlow Transformer. https://www.tensorflow.org/text/tutorials/transformer. Accessed 11 Aug 2022

  9. PyTorch Transformer. https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html. Accessed 11 Aug 2022

  10. Hawkins, J., George, D.: Hierarchical Temporal Memory: Concepts, Theory, and Terminology, Numenta Inc. Whitepaper (2006)

    Google Scholar 

  11. ‘NuPIC PyTorch’. https://nupictorch.readthedocs.io/en/latest/. Accessed 11 Aug 2023

  12. Ahmad, S., Scheinkman, L.: How Can We Be So Dense? The Benefits of Using Highly Sparse Representations (2023). http://arxiv.org/abs/1903.11257. Accessed 11 Aug 2023

  13. Neo4J Graph Data Platform. https://neo4j.com/. Accessed 11 Aug 2023

  14. Zhou, J., et al.: Graph Neural Networks: A Review of Methods and Applications (2018). https://doi.org/10.48550/ARXIV.1812.08434

  15. Zhang, Z., Cui, P., Zhu, W.: Deep Learning on Graphs: A Survey (2018). http://arxiv.org/abs/1812.04202

  16. Horzyk, A., Starzyk, J.A., Graham, J.: Integration of semantic and episodic memories. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 3084–3095 (2017). https://doi.org/10.1109/TNNLS.2017.2728203

    Article  MathSciNet  Google Scholar 

  17. Horzyk, A.: How does generalization and creativity come into being in neural associative systems and how does it form human-like knowledge? Neurocomputing 144, 238–257 (2014). https://doi.org/10.1016/j.neucom.2014.04.046

    Article  Google Scholar 

  18. Lin, T.Y., et al.: Microsoft COCO: Common Objects in Context. http://arxiv.org/abs/1405.0312. Accessed: 15 Jan 2023

  19. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection (2019). https://doi.org/10.48550/ARXIV.1911.09070

  20. Moore, B.E., Corso, J.J.: FiftyOne (2020). GitHub. https://github.com/voxel51/fiftyone

  21. Structural Properties of Associative Knowledge Graphs (2023). https://github.com/PrzemyslawStok/Structural-Properties-of-Associative-Knowledge-Graphs.git. Accessed 11 Aug 2023

  22. Fisher, R.A.: UCI Machine Learning Repository (1936). https://archive.ics.uci.edu/ml/datasets/Iris. Accessed 11 Aug 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz A. Starzyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starzyk, J.A., Stokłosa, P., Horzyk, A., Raif, P. (2024). Structural Properties of Associative Knowledge Graphs. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics