Skip to main content

Lactic Acid Bacteria as a Source of Functional Ingredients

  • Chapter
  • First Online:
Food Microbial Sustainability

Abstract

The formation of fermented foods relies heavily on lactic acid bacteria. They are employed as starters in various dairy, meat, vegetable, and beverage fermentations because of their metabolic capabilities. Their metabolic by-products enhance food’s nutritional content, organoleptic qualities, and microbiological safety. Therefore, we examine the present situation of these items in this chapter. Lactic acid bacteria make antimicrobial substances like bacteriocins and organic acids that stop many pathogenic microorganisms from growing. The biofortification of vitamins by lactic acid bacteria reduces deficiencies and increases food value. Exopolysaccharides produced by LAB provide the dual functions of enhancing food texture and serving as a component of functional foods. They also enhance the flavor of fermented foods through aroma chemicals produced by metabolizing citrate and amino acids. People are apprehensive about processed foods and artificial preservatives. The use of LAB in goods or processing is recognized as a natural method of food preservation and health promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Król, M., & Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms, 8(6), 952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aili, A., Hasim, A., Kelimu, A., Guo, X., Mamtimin, B., Abudula, A., & Upur, H. (2013). Association of the plasma and tissue riboflavin levels with C20orf54 expression in cervical lesions and its relationship to HPV16 infection. PLoS One, 8(11), e79937.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100, 2939–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amari, M., Arango, L. F. G., Gabriel, V., Robert, H., Morel, S., Moulis, C., et al. (2013). Characterization of a novel dextransucrase from Weissella confusa isolated from sourdough. Applied Microbiology and Biotechnology, 97(12), 5413–5422. https://doi.org/10.1007/s00253-012-4447-8

    Article  CAS  PubMed  Google Scholar 

  • Awaisheh, S. S., & Ibrahim, S. A. (2009). Screening of antibacterial activity of lactic acid bacteria against different pathogens found in vacuum-packaged meat products. Foodborne Pathogens and Disease, 6(9), 1125–1132.

    Article  CAS  PubMed  Google Scholar 

  • Ayivi, R. D., Gyawali, R., Krastanov, A., Aljaloud, S. O., Worku, M., Tahergorabi, R., et al. (2020). Lactic acid bacteria: Food safety and human health applications. Dairy, 1(3), 202–232.

    Article  Google Scholar 

  • Binda, S., & Ouwehand, A. C. (2019). Lactic acid bacteria for fermented dairy products. In Lactic acid bacteria (pp. 175–198). CRC Press.

    Chapter  Google Scholar 

  • Boeck, T., Ispiryan, L., Hoehnel, A., Sahin, A. W., Coffey, A., Zannini, E., & Arendt, E. K. (2022). Lentil-based yogurt alternatives fermented with multifunctional strains of lactic acid bacteria—Techno-functional, microbiological, and sensory characteristics. Foods, 11(14), 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bratulić, M., Mikuš, T., Cvrtila, Ž., Cenci-Goga, B. T., Grispoldi, L., Pavunc, A. L., et al. (2021). Quality of traditionally produced Istrian sausage and identification of autochthonous lactic acid bacteria strains as potential functional starter cultures. European Food Research and Technology, 247(11), 2847–2860.

    Article  Google Scholar 

  • Brooijmans, R., Smit, B., Santos, F., Van Riel, J., de Vos, W. M., & Hugenholtz, J. (2009). Heme and menaquinone induced electron transport in lactic acid bacteria. Microbial Cell Factories, 8(1), 1–11.

    Article  Google Scholar 

  • Capozzi, V., Russo, P., Dueñas, M. T., López, P., & Spano, G. (2012). Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Applied Microbiology and Biotechnology, 96, 1383–1394.

    Article  CAS  PubMed  Google Scholar 

  • Cizeikiene, D., Juodeikiene, G., Paskevicius, A., & Bartkiene, E. (2013). Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control, 31(2), 539–545.

    Article  CAS  Google Scholar 

  • Combs, G. F., Jr., & McClung, J. P. (2016). The vitamins: Fundamental aspects in nutrition and health. Academic Press.

    Google Scholar 

  • D’Amelio, P., & Sassi, F. (2018). Gut microbiota, immune system, and bone. Calcified Tissue International, 102, 415–425.

    Article  PubMed  Google Scholar 

  • Dekumpitiya, N., Gamlakshe, D., Abeygunawardena, S., & Jayaratne, D. (2016). Identification of the microbial consortium in Sri Lankan buffalo milk curd and their growth in the presence of prebiotics. Journal of Food Science and Technology Nepal, 9, 20–30.

    Article  Google Scholar 

  • Feijoo-Siota, L., Blasco, L., Luis Rodriguez-Rama, J., Barros-Velázquez, J., de Miguel, T., Sánchez-Pérez, A., & Villa, T. G. (2014). Recent patents on microbial proteases for the dairy industry. Recent Advances in DNA & Gene Sequences (Formerly Recent Patents on DNA & Gene Sequences), 8(1), 44–55.

    Article  CAS  Google Scholar 

  • Florou-Paneri, P., Christaki, E., & Bonos, E. (2013). Lactic acid bacteria as source of functional ingredients. In Lactic acid bacteria-R & D for food, health and livestock purposes. IntechOpen.

    Google Scholar 

  • Franz, C. M., Huch, M., Mathara, J. M., Abriouel, H., Benomar, N., Reid, G., et al. (2014). African fermented foods and probiotics. International Journal of Food Microbiology, 190, 84–96.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar, P., Carvalho, A. L., Vinga, S., Santos, H., & Neves, A. R. (2013). From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances, 31(6), 764–788.

    Article  CAS  PubMed  Google Scholar 

  • Ghoul, M., & Mitri, S. (2016). The ecology and evolution of microbial competition. Trends in Microbiology, 24(10), 833–845.

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg, J. Z., Yap, C., Lytvyn, L., Lo, C. K. F., Beardsley, J., Mertz, D., & Johnston, B. C. (2017). Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database of Systematic Reviews, (12), CD006095.

    Google Scholar 

  • Gómez-Llorente, C., Munoz, S., & Gil, A. (2010). Role of toll-like receptors in the development of immunotolerance mediated by probiotics. Proceedings of the Nutrition Society, 69(3), 381–389.

    Article  PubMed  Google Scholar 

  • González, L., Sacristán, N., Arenas, R., Fresno, J. M., & Tornadijo, M. E. (2010). Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiology, 27(5), 592–597.

    Article  PubMed  Google Scholar 

  • Hamdan, A. M., & Sonomoto, K. (2011). Production of optically pure lactic acid for bioplastics. In Lactic acid bacteria and bifidobacteria: Current progress in advanced research. Caister Academic Press.

    Google Scholar 

  • Hemaiswarya, S., Raja, R., Ravikumar, R., & Carvalho, I. S. (2013). Mechanism of action of probiotics. Brazilian Archives of Biology and Technology, 56, 113–119.

    Article  CAS  Google Scholar 

  • Hertzberger, R., Arents, J., Dekker, H. L., Pridmore, R. D., Gysler, C., Kleerebezem, M., & de Mattos, M. J. T. (2014). H2O2 production in species of the Lactobacillus acidophilus group: A central role for a novel NADH-dependent flavin reductase. Applied and Environmental Microbiology, 80(7), 2229–2239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: Surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1), 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim, S. A., Ayivi, R. D., Zimmerman, T., Siddiqui, S. A., Altemimi, A. B., Fidan, H., et al. (2021). Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods, 10(12), 3131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal, M. Z., Qadir, M. I., Hussain, T., Janbaz, K. H., Khan, Y. H., & Ahmad, B. (2014). Probiotics and their beneficial effects against various diseases. Pakistan Journal of Pharmaceutical Sciences, 27(2), 405.

    PubMed  Google Scholar 

  • Islam, S. U. (2016). Clinical uses of probiotics. Medicine, 95(5), e2658.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juturu, V., & Wu, J. C. (2018). Microbial production of bacteriocins: Latest research development and applications. Biotechnology Advances, 36(8), 2187–2200.

    Article  CAS  PubMed  Google Scholar 

  • Korhonen, J. (2010). Antibiotic resistance of lactic acid bacteria. Itä-Suomen yliopisto.

    Google Scholar 

  • Kurosu, M., & Begari, E. (2010). Vitamin K2 in electron transport system: Are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules, 15(3), 1531–1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laiño, J. E., del Valle, M. J., de Giori, G. S., & LeBlanc, J. G. J. (2013). Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. LWT - Food Science and Technology, 54(1), 1–5.

    Article  Google Scholar 

  • Landete, J. M. (2017). A review of food-grade vectors in lactic acid bacteria: From the laboratory to their application. Critical Reviews in Biotechnology, 37(3), 296–308.

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc, J. G., Milani, C., De Giori, G. S., Sesma, F., Van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Current Opinion in Biotechnology, 24(2), 160–168.

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc, J. G., Laiño, J. E., del Valle, M. J., de Giori, G. S., Sesma, F., & Taranto, M. P. (2015). B-group vitamins production by probiotic lactic acid bacteria. In Biotechnology of lactic acid bacteria: Novel applications (pp. 279–296). John Wiley & Sons, Ltd..

    Chapter  Google Scholar 

  • Liu, S., Hu, W., Wang, Z., & Chen, T. (2020). Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 19(1), 1–16.

    Article  Google Scholar 

  • Mani-López, E., Palou, E., & López-Malo, A. (2018). Biopreservatives as agents to prevent food spoilage. In Microbial contamination and food degradation (pp. 235–270). Elsevier.

    Google Scholar 

  • Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., et al. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 32(7), 1216–1236.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: A systematic review. Journal of Agricultural and Food Chemistry, 63(14), 3615–3626.

    Article  CAS  PubMed  Google Scholar 

  • Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), 1255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mtshali, P. S. (2007). Screening and characterization of wine related enzymes produced by wine associated lactic acid Bacteria. University of Stellenbosch.

    Google Scholar 

  • Nazki, F. H., Sameer, A. S., & Ganaie, B. A. (2014). Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene, 533(1), 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, 4374891.

    Article  PubMed  PubMed Central  Google Scholar 

  • Notararigo, S., Nácher-Vázquez, M., Ibarburu, I., Werning, M. L., de Palencia, P. F., Dueñas, M. T., et al. (2013). Comparative analysis of production and purification of homo-and hetero-polysaccharides produced by lactic acid bacteria. Carbohydrate Polymers, 93(1), 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Nuraida, L. (2015). A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Science and Human Wellness, 4(2), 47–55. https://doi.org/10.1016/j.fshw.2015.06.001

    Article  Google Scholar 

  • O’Connor, P. M., Ross, R. P., Hill, C., & Cotter, P. D. (2015). Antimicrobial antagonists against food pathogens: A bacteriocin perspective. Current Opinion in Food Science, 2, 51–57.

    Article  Google Scholar 

  • O’Shea, E., Cotter, P. D., Stanton, C., Ross, R. P., & Hill, C. (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 152(3), 189–205.

    Article  PubMed  Google Scholar 

  • O’Sullivan, J. N., Rea, M. C., Hill, C., & Ross, R. P. (2020). Protecting the outside: Biological tools to manipulate the skin microbiota. FEMS Microbiology Ecology, 96(6), fiaa085.

    Article  PubMed  Google Scholar 

  • Ohkusa, T., Koido, S., Nishikawa, Y., & Sato, N. (2019). Gut microbiota and chronic constipation: A review and update. Frontiers in Medicine, 6, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira, A., Amaro, A. L., & Pintado, M. (2018). Impact of food matrix components on nutritional and functional properties of fruit-based products. Current Opinion in Food Science, 22, 153–159.

    Article  Google Scholar 

  • Özcelik, S., Kuley, E., & Özogul, F. (2016). Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT - Food Science and Technology, 73, 536–542.

    Article  Google Scholar 

  • Papagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Computational and Structural Biotechnology Journal, 3(4), e201210003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, A., Shah, N., & Prajapati, J. (2013). Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera-A promising approach. Croatian Journal of Food Science and Technology, 5(2), 85–91.

    Google Scholar 

  • Peh, E., Kittler, S., Reich, F., & Kehrenberg, C. (2020). Antimicrobial activity of organic acids against Campylobacter spp. and development of combinations—A synergistic effect? PLoS One, 15(9), e0239312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories, 13(1), 1–13.

    Google Scholar 

  • Petrova, P., Petrov, K., & Stoyancheva, G. (2013). Starch-modifying enzymes of lactic acid bacteria–Structures, properties, and applications. Starch-stärke, 65(1–2), 34–47.

    Article  CAS  Google Scholar 

  • Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10(Suppl 1), S49–S66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prosser, J. I., Bohannan, B. J., Curtis, T. P., Ellis, R. J., Firestone, M. K., Freckleton, R. P., et al. (2007). The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 5(5), 384–392.

    Article  CAS  PubMed  Google Scholar 

  • Quinto, E. J., Jiménez, P., Caro, I., Tejero, J., Mateo, J., & Girbés, T. (2014). Probiotic lactic acid bacteria: A review. Food and Nutrition Sciences, 5(18), 1765.

    Article  Google Scholar 

  • Ricke, S. C., Dittoe, D. K., & Richardson, K. E. (2020). Formic acid as an antimicrobial for poultry production: A review. Frontiers in Veterinary Science, 7, 563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rühmkorf, C., Bork, C., Mischnick, P., Rübsam, H., Becker, T., & Vogel, R. F. (2013). Identification of Lactobacillus curvatus TMW 1.624 dextransucrase and comparative characterization with Lactobacillus reuteri TMW 1.106 and Lactobacillus animalis TMW 1.971 dextransucrases. Food Microbiology, 34(1), 52–61.

    Article  PubMed  Google Scholar 

  • Ruiz Rodríguez, L. G., Mohamed, F., Bleckwedel, J., Medina, R., De Vuyst, L., Hebert, E. M., & Mozzi, F. (2019). Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in Northern Argentina. Frontiers in Microbiology, 10, 1091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rul, F., Zagorec, M., & Champomier-Vergès, M.-C. (2012). Lactic acid bacteria in fermented foods. In Proteomics in foods: Principles and applications (pp. 261–283). Springer.

    Google Scholar 

  • Saeed, A. H., & Salam, A. I. (2013). Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences, 4, 73.

    Article  Google Scholar 

  • Sallam, K. I. (2007). Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control, 18(5), 566–575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, V., Ranveer, R., Jain, N., & Aseri, G. (2019). Bacteriocins: Production, different strategies of purification and applications. International Journal of Research in Pharmaceutical Sciences, 10, 1808–1817.

    Article  CAS  Google Scholar 

  • Sieuwerts, S., Bron, P. A., & Smid, E. J. (2018). Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT - Food Science and Technology, 90, 201–206.

    Article  CAS  Google Scholar 

  • Singh, H., & Singh, H. (2014). Probiotics–An emerging concept. International Journal of Scientific and Research Publications, 4(6), 1–3.

    CAS  Google Scholar 

  • Tamang, J. P., Thapa, N., Tamang, B., Rai, A., & Chettri, R. (2015). Microorganisms in fermented foods and beverages. In Health benefits of fermented foods and beverages (pp. 1–110). Routledge.

    Chapter  Google Scholar 

  • Tamime, A. Y., & Thomas, L. V. (2018). Probiotic dairy products. John Wiley & Sons.

    Google Scholar 

  • Thakur, K., Lule, V. K., Rajni, C., Kumar, N., Mandal, S., Anand, S., et al. (2016a). Riboflavin producing probiotic Lactobacilli as a biotechnological strategy to obtain riboflavin-enriched fermented foods. Journal of Pure and Applied Microbiology, 10, 161–166.

    CAS  Google Scholar 

  • Thakur, K., Tomar, S. K., & De, S. (2016b). Lactic acid bacteria as a cell factory for riboflavin production. Microbial Biotechnology, 9(4), 441–451.

    Article  CAS  PubMed  Google Scholar 

  • Walther, B., Karl, J. P., Booth, S. L., & Boyaval, P. (2013). Menaquinones, bacteria, and the food supply: The relevance of dairy and fermented food products to vitamin K requirements. Advances in Nutrition, 4(4), 463–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, R. R., Collier, R. J., & Preedy, V. R. (2017). Nutrients in dairy and their implications for health and disease. Academic Press.

    Google Scholar 

  • Wong, W.-Y., Chan, B. D., Leung, T.-W., Chen, M., & Tai, W. C.-S. (2022). Beneficial and anti-inflammatory effects of formulated prebiotics, probiotics, and synbiotics in normal and acute colitis mice. Journal of Functional Foods, 88, 104871.

    Article  CAS  Google Scholar 

  • Ye, P., Wang, J., Liu, M., Li, P., & Gu, Q. (2021). Purification and characterization of a novel bacteriocin from Lactobacillus paracasei ZFM54. LWT - Food Science and Technology, 143, 111125.

    Article  CAS  Google Scholar 

  • Yepez, L., & Tenea, G. N. (2015). Genetic diversity of lactic acid bacteria strains towards their potential probiotic application. Romanian Biotechnology Letters, 20(2), 10191–10199.

    CAS  Google Scholar 

  • Zacharof, M.-P., & Lovitt, R. (2012). Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia, 2, 50–56.

    Article  CAS  Google Scholar 

  • Zannini, E., Waters, D. M., Coffey, A., & Arendt, E. K. (2016). Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121–1135. https://doi.org/10.1007/s00253-015-7172-2

    Article  CAS  PubMed  Google Scholar 

  • Zarour, K., Vieco, N., Pérez-Ramos, A., Nácher-Vázquez, M., Mohedano, M. L., & López, P. (2017). Food ingredients synthesized by lactic acid bacteria. In Microbial production of food ingredients and additives (pp. 89–124). Elsevier.

    Chapter  Google Scholar 

  • Zhu, Y.-Y., Thakur, K., Feng, J.-Y., Cai, J.-S., Zhang, J.-G., Hu, F., et al. (2020). Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: Insights into improved nutritional and functional attributes. Applied Microbiology and Biotechnology, 104, 5759–5772.

    Article  CAS  PubMed  Google Scholar 

  • Zommiti, M., Feuilloley, M. G., & Connil, N. (2020). Update of probiotics in human world: A nonstop source of benefactions till the end of time. Microorganisms, 8(12), 1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Rahman Mohammad Said Al-Tawaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatima, M. et al. (2023). Lactic Acid Bacteria as a Source of Functional Ingredients. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Food Microbial Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-4784-3_8

Download citation

Publish with us

Policies and ethics