Skip to main content

Mitigating the One Health Impacts of Agrochemicals Through Sustainable Policies and Regulations

  • Chapter
  • First Online:
One Health Implications of Agrochemicals and their Sustainable Alternatives

Abstract

The rapid rate of industrialization coupled with the increase in human population has caused an increased usage of agrochemicals in the environment. These agrochemicals (pesticides) are applied on agricultural fields and urban green spaces with the aim of disease protection for both biodiversity and humans. The increased use of agrochemicals has brought a wide range of human health issues as their negative consequences have now outweighed the advantages of their use. This review demonstrates the adverse effects that indiscriminate pesticide usage has on several environmental factors. Some of the negative consequences of using pesticides include a decrease in beneficial animals like predators, pollinating insects, and earthworms, a rise in resistant pest populations, and pollution of the water and air ecosystem. Due to their persistence, pesticides have had a significant negative impact on our ecology, causing them to infiltrate higher trophic levels like that of humans and other large mammals, as well as many food chains. As a result of the consumption of contaminated food, water, or air, some acute and chronic human ailments have surfaced. To safeguard our environment and any potential health risks linked to it, the correct usage of pesticides is now required. Appropriate pest control methods, such as integrated pest management (IPM), which employs a couple of various mitigation strategies, such as cultural control, use of resistant genotypes, physio-mechanical control, and logical and reasonable use of pesticides, may reduce the frequency and volume of agrochemicals. Furthermore, cutting-edge techniques like biotechnology and nanotechnology may help in the development of pesticides with less harmful side effects or genotypes resistant to them. Farmers may be encouraged to adopt cutting-edge IPM strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Agvet:

Agriculture and Veterinary

AMPs:

Administrative Monetary Penalties

APVMA:

Australian Pesticides and Veterinary Medicines Authority

BVL:

Federal Office for Consumer Protection and Food Safety

CDC:

Centre for Disease Control

CWA:

Clean Water Act

DAFM:

Department of Agriculture, Food and Marine

DDT:

Dichlorodiphenyltrichloroethane

EFSA:

European Food Safety Authority

EPA:

Environmental Protection Agency

EU:

European Union

FAO:

Food and Agricultural Organization

FIFRA:

Federal Insecticide, Fungicide and Rodenticide Act

HHPs:

Highly Hazardous Pesticides

IPM:

Integrated Pest Management

NVWA:

The Netherlands Food and Consumer Product Safety Authority

ORPS:

Oxygen reduction potential in the soil

PCD:

Pesticide Controls Division

PCPA:

Pest Control Products Act

PMRA:

Pest Management Regulatory Agency

POP:

Persistence of Organic Products

PPP:

Public Private Practices

PRIA:

Pesticide Registration Improvement Act

UN:

United Nations

UNEP:

United Nations Educational Programme

USD:

United States Dollar

USEPA:

United States Environmental Protection Agency

WHO:

World Health Organization

References

  • Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A et al (2015) Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PLoS One 10(9):e0138411

    PubMed  PubMed Central  Google Scholar 

  • Ali S, Ullah MI, Sajjad A, Shakeel Q, Hussain A (2021) Environmental and health effects of pesticideresidues. In: Inamuddin E, Ahamed MI, Lichtfouse E (eds) Sustainable agriculture reviews, vol 48. Springer, Cham, pp 311–366

    Google Scholar 

  • Arya V, Page A, Gunnel D, Armstrong G (2021) Changes in method specific suicide following a national pesticide ban in India (2011–2014). J Affect Disord 278:592–600

    PubMed  Google Scholar 

  • Bang G, Victor DG, Andresen S (2017) California’s cap-and-trade system: diffusion and lessons. Glob Environ Politics 17:12–30. https://doi.org/10.1162/GLEP_a_00413

    Article  Google Scholar 

  • Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110:11039–11043. https://doi.org/10.1073/pnas.1305618110

    Article  PubMed  PubMed Central  Google Scholar 

  • Berg ZK, Rodriguez B, Davis J, Katz AR, Cooney RV, Masaki K (2019) Association between occupational exposure to pesticides and cardiovascular disease incidence: the Kuakini Honolulu Heart Program. J Am Heart Assoc 8(19). https://doi.org/10.1161/JAHA.119.012569

  • Bernardes MFF, Pazin M, Pereira LC, Dorta DJ (2015) Impact of pesticides on environmental and human health. In: Andreazza AC, Scola G (eds) Toxicology studies—cells, drugs and environment. IntechOpen, London, pp 195–233

    Google Scholar 

  • Boedeker W, Watts M, Clausing P, Marquez E (2020) The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health 20:1875

    PubMed  PubMed Central  Google Scholar 

  • Boivin A, Poulsen V (2017) Environmental risk assessment of pesticides: state of the art and prospective improvement from science. Environ Sci Pollut Res 24:6889–6894. https://doi.org/10.1007/s11356-016-8289-2

    Article  CAS  Google Scholar 

  • Bonvoisin T, Utyasheva L, Knipe D, Gunnell D, Eddleston M (2020) Suicide by pesticide poisoning in India: a review of pesticide regulations and their impact on suicide trends. BMC Public Health 20:251

    PubMed  PubMed Central  Google Scholar 

  • Brack W, Dulio V, Ågerstrand M et al (2017) Towards the review of the European Union water framework management of chemical contamination in European surface water resources. Sci Total Environ 576:720–737. https://doi.org/10.1016/j.scitotenv.2016.10.104

    Article  CAS  PubMed  Google Scholar 

  • Brown AR, Whale G, Jackson M et al (2017) Toward the definition of specific protection goals for the environmental risk assessment of chemicals: a perspective on environmental regulation in Europe: defining Environmental protection goals for chemicals. Integr Environ Assess Manag 13:17–37. https://doi.org/10.1002/ieam.1797

    Article  PubMed  Google Scholar 

  • Buralli RJ, Ribeiro H, Leao RS, Marques RC, Guimaraes JRD (2019) Data on pesticide exposure and mental health screening of family farmers in Brazil. Data Brief 25:103993

    PubMed  PubMed Central  Google Scholar 

  • Burns CJ, Juberg DR (2021) Cancer and occupational exposure to pesticides: an umbrella review. Int Arch Occup Environ Health 94(5):945–957

    PubMed  PubMed Central  Google Scholar 

  • Buscail C, Chevrier C, Serrano T, Pele F, Monfort C et al (2015) Prenatal pesticide exposure and otitis media during early childhood in the PELAGIE mother-child cohort. Occup Environ Med 72(12):837–844

    PubMed  Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6(2):48–60

    Google Scholar 

  • CDC (Center for Disease Control and Prevention) (2009) Fourth national report on human exposure to environmental chemicals. CDC, US Dep. Health Hum. Serv., Atlanta. https://www.cdc.gov/exposurereport/pdf/fourthreport.pdf

    Google Scholar 

  • Chakraborty P, Zhang G, Li J, Sivakumar A, Jones KC (2015) Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air–soil exchange. Environ Pollut 204:74–80

    CAS  PubMed  Google Scholar 

  • Chang ET, Delzell E (2016) Systematic review and meta-analysis of glyphosate exposure and risk of lympho hematopoietic cancers. J Environ Sci Health B51(6):402–434

    Google Scholar 

  • Clark JFM (2017) Pesticides, pollution and the UK’s silent spring, 1963–1964: poison in the Garden of England. Notes Rec 71:297–327

    CAS  Google Scholar 

  • CMVP (2016) Draft guideline on the higher tier testing of veterinary medicinal products to dung fauna. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-higher-tier-testing-veterinary-medicinal-products-dung-faunaen.pdf

  • De Roos AJ, Zahm SH, Cantor KP, Weisenburger DD, Holmes FF et al (2003) Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men. Occup Environ Med 60(9):e11

    PubMed  PubMed Central  Google Scholar 

  • Delcour I, Spanoghe P, Uyttendaele M (2015) Literature review: impact of climate change on pesticide use. Food Res Int 68:7–15

    Google Scholar 

  • Devi PI, Manjula M, Bhavani RV (2022) Agrochemicals, environment and human health. Annu Rev Environ Resour 2022(47):399–421. https://doi.org/10.1146/annurev-environ-120920-111015

    Article  Google Scholar 

  • Dileep Kumar AD, Jayakumar C (2019) From precautionary principle to nationwide ban on endosulfanin India. Bus Hum Rights J4(2):343–349

    Google Scholar 

  • Dwivedi N, Mahdi AA, Deo S, Ahmad MK, Kumar D (2022) Assessment of genotoxicity and oxidative stress in pregnant women contaminated to organochlorine pesticides and its correlation with pregnancy outcome. Environ Res 204(B):112010

    CAS  PubMed  Google Scholar 

  • EC (2002) Guidance Document on Aquatic Ecotoxicology in the context of the Directive 91/414/EEC. Directorate E—Food Safety: plant health, animal health and welfare, international questions, Brussels, Belgium

    Google Scholar 

  • EFSA (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J 11:3290. https://doi.org/10.2903/j.efsa.2013.3290

    Article  CAS  Google Scholar 

  • Ellis EC (2021) Land use and ecological change: a 12,000-year history. Annu Rev Environ Resour 46:1–33

    Google Scholar 

  • Embrandiri A, Singh RP, Ibrahim HM, Khan AB (2012) An epidemiological study on the health effects of endosulfan spraying on cashew plantations in Kasaragod district, Kerala, India. Asian J Epidemiol 5:22–31

    Google Scholar 

  • EU (2011) Commission Regulation (EU) No. 546/2011 of 10 June 2011 implementing Regulation (EC) No. 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. Official Journal of the European Union, Brussel

    Google Scholar 

  • European Commission, Directorate-General for Research and Innovation (2018) EU authorisation processes of plant protection products from a scientific point of view, Group of Chief Scientific Advisors. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • European Environment Agency (2006) Integration of environment into EU agriculture policy—the IRENA indicator-based assessment report. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Evans SS, Repasky EA, Fisher DT (2015) Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 15(6):335–349. https://doi.org/10.1038/nri3843. Epub 2015 May 15. PMID: 25976513; PMCID: PMC4786079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans AEV, Mateo-Sagasta J, Qadir M, Boelee E, Ippolito A (2019) Agricultural water pollution: key knowledge gaps and research needs. Curr Opin Environ Sustain 36:20–27

    Google Scholar 

  • Farhan M, Wajid A, Hussain T, Jabeen F, Ishaque U et al (2021) Investigation of oxidative stress enzymes and histological alterations in tilapia exposed to chlorpyrifos. Environ Sci Pollut Res Int 28(11):13105–13111

    CAS  PubMed  Google Scholar 

  • Faria NM, Fassa AG, Meucci RD, Fiori NS, Miranda VI (2014) Occupational exposure to pesticides, nicotine and minor psychiatric disorders among tobacco farmers in southern Brazil. Neurotoxicology 45:347–354

    CAS  PubMed  Google Scholar 

  • Forister ML, Pelton EM, Black SH (2019) Declines in insect abundance and diversity: We know enough to act now. Conserv Sci Pract 1(8):e80

    Google Scholar 

  • Furlan L, Pozzebon A, Duso C et al (2018) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides. Environ Sci Pollut Res 1:1. https://doi.org/10.1007/s11356-017-1052-5

    Article  Google Scholar 

  • Galloway JN, Bleeker A, Erisman JW (2021) The human creation and use of reactive nitrogen: a global and regional perspective. Annu Rev Environ Resour 46:255–288

    Google Scholar 

  • Gill HK, Garg H (2014) Pesticides: environmental impacts and management strategies. In: Larramendy ML, Soloneski S (eds) Pesticides—toxic aspects. IntechOpen, London, pp 187–230

    Google Scholar 

  • Guan KL, Liu Y, Luo XJ, Zeng YH, Mai BX (2020) Short- and medium-chain chlorinated paraffins in aquatic organisms from an e-waste site: biomagnification and maternal transfer. Sci Total Environ 708:134840

    CAS  PubMed  Google Scholar 

  • Guha R (2016) Environmentalism: a global history. Penguin, London

    Google Scholar 

  • Gunatilake S, Seneff S, Orlando L (2019) Glyphosate’s synergistic toxicity in combination with other factors as a cause of chronic kidney disease of unknown origin. Int J Environ Res Public Health 16(15):2734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunstone T, Cornelisse T, Klein K, Dubey A, Donley N (2021) Pesticides and soil invertebrates: a hazard assessment. Front Environ Sci 9. https://doi.org/10.3389/fenvs.2021.643847

  • Gupta S, Gupta K (2020) Bioaccumulation of pesticides and its impact on biological systems. In: Srivastava PK, Singh VP, Singh A, Tripathi DK, Singh S et al (eds) Pesticides in crop production: physiological and biochemical action. Wiley, Hoboken, NJ, pp 55–67

    Google Scholar 

  • Habib Y (2019) Effect of agrochemicals o environment, health, and safety: assessment from small holder farmers standpoint. Elixir Agric 138(2019):5409–54075

    Google Scholar 

  • Hallmann CA, Foppen RPB, van Turnhout CAM et al (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–343. https://doi.org/10.1038/nature13531

    Article  CAS  PubMed  Google Scholar 

  • Hassaan MA, Nemr AE (2020) Pesticides pollution: classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res 46(3):207–220

    Google Scholar 

  • Ikhajiagbe B, Ogwu MC (2020) Hazard quotient, microbial diversity and plant composition of spent crude oil polluted-soil. Beni-Suef Univ J Basic Appl Sci 9(26). https://doi.org/10.1186/s43088-020-00052-0

  • Ikhajiagbe B, Ogwu MC (2021) Growth performance and ferulic acid composition of Amaranthus [L.] species and Mitracarpus villosus (Sw.) DC. in competition with weed species. Environ Sustain 4:691. https://doi.org/10.1007/s42398-021-00163-z

    Article  CAS  Google Scholar 

  • Inatimi SA, Popoola OM, Yarkwan B, Iyiola AO, Izah SC (2022) Therapeutic potentials of wildlife resources and options for conservation. In: Izah SC (ed) Biodiversity in Africa: potentials, threats and conservation, sustainable development and biodiversity, vol 29. Springer, pp 369–394. https://doi.org/10.1007/978-981-19-3326-4_6

    Chapter  Google Scholar 

  • Iyiola AO, Akinrinade AJ, Ajayi FO (2022a) Effects of water pollution on biodiversity across coastal regions. In: Izah SC (ed) Biodiversity in Africa: potentials, threats and conservation, sustainable development and biodiversity, vol 29. Springer, pp 345–367. https://doi.org/10.1007/978-981-19-3326-4_13

    Chapter  Google Scholar 

  • Iyiola AO, Berchie A, Oyewole OO, Akinrinade AJ (2022b) Impacts of climate change on biodiversity in Africa. In: Izah SC (ed) Biodiversity in Africa: potentials, threats and conservation, sustainable development and biodiversity, vol 29. Springer, pp 369–394. https://doi.org/10.1007/978-981-19-3326-4_14

    Chapter  Google Scholar 

  • Iyiola AO, Babafemi OP, Ogundahunsi OE, Ojeleye AE (2022c) Food security: a pathway towards improved nutrition and biodiversity conservation. In: Izah SC (ed) Biodiversity in Africa: potentials, threats and conservation, sustainable development and biodiversity, vol 29. Springer, pp 369–394. https://doi.org/10.1007/978-981-19-3326-4_4

    Chapter  Google Scholar 

  • Iyiola AO, Kolawole AS, Asiedu B, Abobi SM (2022d) Disinfectant Impacts on water quality and fishes during the fight against covid-19 spread. Songklanakarin J Sci Technol 44(5):1279–1286

    CAS  Google Scholar 

  • Izah SC, Aigberua AO (2020) Microbial and heavy metal hazard analysis of edible tomatoes (Lycopersicon esculentum) in Port Harcourt, Nigeria. Toxicol Environ Health Sci 12(4):371–380

    Google Scholar 

  • Izah SC, Bassey SE, Ohimain EI (2017a) Geo-accumulation index, enrichment factor and quantification of contamination of heavy metals in soil receiving cassava mill effluents in a rural community in the Niger Delta region of Nigeria. Mol Soil Biol 8(2):7–20

    Google Scholar 

  • Izah SC, Bassey SE, Ohimain EI (2017b) Assessment of heavy metal in cassava mill effluent contaminated soil in a rural community in the Niger Delta region of Nigeria. EC Pharmacol Toxicol 4(5):186–201

    Google Scholar 

  • Izah SC, Bassey SE, Ohimain EI (2017c) Assessment of pollution load indices of heavy metals in cassava mill effluents contaminated soil: a case study of small-scale cassava processing mills in a rural community of the Niger Delta region of Nigeria. Biosci Methods 8(1):1–17

    Google Scholar 

  • Izah SC, Bassey SE, Ohimain EI (2018) Ecological risk assessment of heavy metals in cassava mill effluents contaminated soil in a rural community in the Niger Delta Region of Nigeria. Mol Soil Biol 9(1):1–11

    Google Scholar 

  • Izah SC, Uzoekwe SA, Aigberua AO (2021a) Source, geochemical spreading and risks of trace metals in particulate matter 2.5 within a gas flaring area in Bayelsa State, Nigeria. Adv Environ Technol 7(2):101–118

    Google Scholar 

  • Izah SC, Richard G, Aigberua AO, Ekakitie O (2021b) Variations in reference values utilized for the evaluation of complex pollution indices of potentially toxic elements: a critical review. Environ Challenges 5:100322. https://doi.org/10.1016/j.envc.2021.100322

    Article  CAS  Google Scholar 

  • Izah SC, Iyiola AO, Richard G (2022a) Impacts of pollution on the hydrogeochemical and microbial community of aquatic ecosystems in Bayelsa State, Southern Nigeria. In: Madhav S, Singh VB, Kumar M, Singh S (eds) Hydrogeochemistry of aquatic ecosystems. John Wiley & Sons Ltd., pp 283–305. https://doi.org/10.1002/9781119870562.ch13. Print ISBN: 9781119870531. Online ISBN: 9781119870562

    Chapter  Google Scholar 

  • Izah SC, Aigberua AO, Richard G (2022b) Concentration, source, and health risk of trace metals in some liquid herbal medicine sold in Nigeria. Biol Trace Elem Res 200:3009–3302

    CAS  PubMed  Google Scholar 

  • Izah SC, Iyiola AO, Yarkwan B, Richard G (2023) Impact of air quality as a component of climate change on biodiversity-based ecosystem services. In: Srivastav AL, Dubey AK, Kumar A, Narang SK, Khan MA (eds) Visualization techniques for climate change with machine learning and artificial intelligence. Elsevier, pp 123–147. https://doi.org/10.1016/B978-0-323-99714-0.00005-4

    Chapter  Google Scholar 

  • John DA, Babu GR (2021) Lessons from the aftermaths of Green Revolution on food system and health. Front Sustain Food Syst 5:644559

    PubMed  PubMed Central  Google Scholar 

  • Jorgenson AK, Kuykendall KA (2008) Globalization, foreign investment dependence and agriculture production: pesticide and fertilizer use in less developed countries, 1990–2000. Soc Forces 87(1):529–560

    Google Scholar 

  • Karunarathne A, Gunnell D, Konradsen F, Eddleston M (2020) How many premature deaths from pesticide suicide have occurred since the agricultural Green Revolution? Clin Toxicol 58(4):227–232

    CAS  Google Scholar 

  • Katagi T, Tanaka H (2016) Metabolism, bioaccumulation, and toxicity of pesticides in aquatic insect larvae. J Pestic Sci 41(2):25–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MN, Mobin M, Zahid A, Alamri S (2017) Fertilizers and their contaminants in soils, surface and groundwater. Ref Module Earth Syst Environ Sci 5:225–240

    Google Scholar 

  • Khanal G, Singh A (2016) Patterns of pesticide use and associated factors among the commercial farmer of Chitwan, Nepal. Environ Health Insights 10(1):1–7

    PubMed  PubMed Central  Google Scholar 

  • Knäbel A, Stehle S, Schäfer RB, Schulz R (2012) Regulatory FOCUS surface water models fail to predict insecticide concentrations in the field. Environ Sci Technol 46:8397–8404

    PubMed  Google Scholar 

  • Knäbel A, Meyer K, Rapp J, Schulz R (2014) Fungicide field concentrations exceed FOCUS surface water predictions: urgent need of model improvement. Environ Sci Technol 48:455–463. https://doi.org/10.1021/es4048329

    Article  CAS  PubMed  Google Scholar 

  • Knipe DW, Chang SS, Dawson A, Eddleston M, Konradsen F et al (2017) Suicide prevention through means restriction: impact of the 2008–2011 pesticide restrictions on suicide in Sri Lanka. PLoS One 12(3):e0172893

    PubMed  PubMed Central  Google Scholar 

  • Kumar L, Manjula M, Bhatta R, Venkatachalam L, Kumar DS et al (2019) Doubling India’s farmin comes: paying farmers for ecosystem services, not just crops. Econ Polit Wkly 54(23):43–49

    Google Scholar 

  • Kumari KA, Raja Kumar KN, Narasimha Rao CH (2014) Adverse effects of chemical fertilizers and pesticides on human health and environment. National seminar on impact of toxic metals, minerals and solvents leading to environmental pollution. J Chem Pharm Sci. ISSN: 0974-2115

    Google Scholar 

  • Lechenet M, Dessaint F, Py G et al (2017) Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat Plants 3:17008

    PubMed  Google Scholar 

  • Liess M, Beketov M (2011) Traits and stress: keys to identify community effects of low levels of toxicants in test systems. Ecotoxicology 20:1328–1340. https://doi.org/10.1007/s10646-011-0689-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Tang J, Zhong G, Zhen X, Pan X, Tian C (2018) Spatial distribution and seasonal variation of four current-use pesticides (CUPs) in air and surface water of the Bohai Sea, China. Sci Total Environ 621:516–523

    CAS  PubMed  Google Scholar 

  • Lu D, Wang D, Ni R, Lin Y, Feng C et al (2015) Organochlorine pesticides and their metabolites inhuman breast milk from Shanghai, China. Environ Sci Pollut Res Int 22(12):9293–9306

    CAS  PubMed  Google Scholar 

  • Maggi F, Tang F, la Cecilia D, McBratney A (2019) PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci Data 6(1):170

    PubMed  PubMed Central  Google Scholar 

  • Mahapatro GK, Panigrahi M (2014) Endosulfan issue: science versus conscience. Curr Sci 106:152–155

    Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Hakeem KR, Akhtar M, Abdullah S (eds) Plant, soil and microbes. Springer, Cham, pp 253–269

    Google Scholar 

  • Maltby L, van den Brink PJ, Faber JH, Marshall S (2018) Advantages and challenges associated with implementing an ecosystem services approach to ecological risk assessment for chemicals. Sci Total Environ 621:1342–1351. https://doi.org/10.1016/j.scitotenv.2017.10.094

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC (2020) Impact of agrochemicals on soil health. In: Narasimha M, Prasad V (eds) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 161–187

    Google Scholar 

  • Manjula M, Venkatachalam L, Mukhopadhyay P, Kumar L (2019) Ecosystems service approach for revitalizing agriculture in India. Curr Sci 116(5):723–727

    Google Scholar 

  • Manjunatha AV, Ramappa KB(2017)Farmer suicides: an all India study. Rep., Dep. Agric. Coop. Farmers Welfare, Gov. India

    Google Scholar 

  • Mateo-Sagasta J, Marjani SZ, Turral H (2017) Water pollution from agriculture: a global review. Executive summary. Rep., U. N. Food Agric. Organ. http://www.fao.org/3/i7754e/i7754e.pdf

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V et al (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9(2):34

    Google Scholar 

  • Mew EJ, Padmanathan P, Konradsen F, EddlestonM CSS et al (2017) The global burden of fatal self-poisoning with pesticides 2006–15: systematic review. J Affect Disord 219:93–104

    PubMed  Google Scholar 

  • Milner AM, Boyd IL (2017) Toward pesticido vigilance. Science 357:1232–1234. https://doi.org/10.1126/science.aan2683

    Article  CAS  PubMed  Google Scholar 

  • Mourtzinis S, Krupke CH, Esker PD, Varenhorst A, Arneson NJ et al (2019) Neonicotinoid seed organophosphate esters in the food web of Taihu Lake, China: impacts of chemical properties and metabolism. Environ Int 125:25–32

    Google Scholar 

  • Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520(7545):45–50

    CAS  PubMed  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    PubMed  PubMed Central  Google Scholar 

  • Nwizugbo KC, Ogwu MC, Eriyamremu GE, Ahana CM (2023) Alterations in energy metabolism, total protein, uric and nucleic acids in African sharptooth catfish (Clarias gariepinus Burchell.) exposed to crude oil and fractions. Chemosphere 316:137778. https://doi.org/10.1016/j.chemosphere.2023.137778

    Article  CAS  PubMed  Google Scholar 

  • Nyambo DG, Luhanga ET, Yonah ZQ (2019) A review of characterization approaches for smallholderfarmers: towards predictive farm typologies. ScientificWorldJournal 2019:6121467

    PubMed  PubMed Central  Google Scholar 

  • O’Donnell CF, Hoare JM (2012) Quantifying the benefits of long-term integrated pest control for forest bird populations in a New Zealand temperate rainforest. N Z J Ecol 36:131–140

    Google Scholar 

  • OECD (2013) Pesticide compliance and enforcement: laws, policies and guidance. https://www.oecd.org/chemicalsafety/pesticide-compliance/laws-policies-guidance.htm

  • Ogwu MC (2019a) Lifelong consumption of plant-based GM foods: is it safe? In: Papadopoulou P, Misseyanni A, Marouli C (eds) Environmental exposures and human health challenges. IGI Global, Hershey, PA, pp 158–176. https://doi.org/10.4018/978-1-5225-7635-8.ch008

    Chapter  Google Scholar 

  • Ogwu MC (2019b) Understanding the composition of food waste: an “-omics” approach to food waste management. In: Gunjal AP, Waghmode MS, Patil NN, Bhatt P (eds) Global initiatives for waste reduction and cutting food loss. IGI Global, Hershey, PA, pp 212–236. https://doi.org/10.4018/978-1-5225-7706-5.ch011

    Chapter  Google Scholar 

  • Ogwu MC (2019c) Towards sustainable development in Africa: the challenge of urbanization and climate change adaptation. In: Cobbinah PB, Addaney M (eds) The geography of climate change adaptation in urban Africa. Springer Nature, Cham, pp 29–55. https://doi.org/10.1007/978-3-030-04873-0_2

    Chapter  Google Scholar 

  • Ogwu MC (2020) Value of Amaranthus [L.] species in Nigeria. In: Waisundara V (ed) Nutritional value of Amaranth. London, IntechOpen, pp 1–21. https://doi.org/10.5772/intechopen.86990

    Chapter  Google Scholar 

  • Ogwu MC, Ahana CM, Osawaru ME (2018) Sustainable food production in Nigeria: a case study for Bambara groundnut (Vigna subterranean (L.) Verdc. Fabaceae). J Energy Nat Resour Manag 1:68–77

    Google Scholar 

  • Ogwu MC, Izah SC, Iyiola AO (2022) An overview of the potentials, threats, and conservation of biodiversity in Africa. In: Izah SC (ed) Biodiversity in Africa: potentials, threats and conservation, sustainable development and biodiversity, vol 29. Springer, Cham, pp 1–20. https://doi.org/10.1007/978-981-19-3326-4_1

    Chapter  Google Scholar 

  • Ojeleye AE, Iyiola AO, Babafemi OP, Adebayo QS (2022) Botanical Gardens. A reliable tool for documenting sustainability patterns in vegetative species. In: Izah SC (ed) Biodiversity in Africa: Potentials, Threats and Conservation, Sustainable Development and Biodiversity 29. Springer, pp 369–394. https://doi.org/10.1007/978-981-19-3326-4_3

    Chapter  Google Scholar 

  • Osawaru ME, Ogwu MC, Braimah L (2013a) Growth responses of two cultivated Okra species (Abelmoschus caillei (A. Chev.) Stevels and Abelmoschus esculentus (Linn.) Moench) in crude oil contaminated soil. Nigerian J Basic Appl Sci 21(3):215–226

    Google Scholar 

  • Osawaru ME, Ogwu MC, Chime AO (2013b) Assessment of growth performance of two Okra species (Abelmoschus esculentus [L.] Moench and Abelmoschus caillei [A. Chev.] Stevels) exposed to crude oil contaminated soil. Nigerian J Biotechnol 26:11–20

    Google Scholar 

  • Ou J, Li H, Ou X, Yang Z, Chen M et al (2020) Degradation, adsorption and leaching of phenazine-1-carboxamide in agricultural soils. Ecotoxicol Environ Saf 205:111374

    CAS  PubMed  Google Scholar 

  • Perez-Mendez N, Andersson GKS, Requier F, Hipolito J, Aizen MA et al (2020) The economic cost of losing native pollinator species for orchard production. J Appl Ecol 57:599–608

    Google Scholar 

  • Peterson MA, Collavo A, Ovejero R, Shivrain V, Walsh MJ (2018) The challenge of herbicide resistance around the world: a current summary. Pest Manag Sci 74(10):2246–2259

    CAS  PubMed  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2017) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291. https://doi.org/10.1126/Science.1208742

    Article  Google Scholar 

  • Prabhakumari C, Jayakrishnan T, Bina T (2011) Epidemiological studies related to health in endosulfan affected areas at Kasaragod district in Kerala 2010–11. Rep., Dep. Commun. Med., Gov. Med. Coll., Calicut, India. https://www.scribd.com/doc/312236388/Calicut-Medical-College-Full-Report-Endosulfan-Issue

  • Prashar P, Shah S (2016) Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 19. Springer, Cham, pp 331–361

    Google Scholar 

  • Rahaman MM, Islam KS, Jahan M (2018) Rice farmers’ knowledge of the risks of pesticide use in Bangladesh. J Health Pollut 8(20):181203

    PubMed  PubMed Central  Google Scholar 

  • Rajendran S (2002) Pesticide spraying in Kerala—human costs and environmental loss. Econ Polit Wkly 37(23):2206–2207

    Google Scholar 

  • Rajendran S (2003) Environment and health aspects of pesticide use in Indian agriculture. In: Bunch MJ, Suresh VM, Vasantha Kumaran T (eds) Proceedings of the third international conference on environment and health, Chennai, India, 15–17 December, 2003. Dep. Geogr., Univ. Madras; Chennai/Environ. Stud., York Univ., Chennai/Toronto, ON, pp 353–373. http://www.yorku.ca/bunchmj/ICEH/proceedings/Rajendran_S_ICEH_papers_353to373.pdf

    Google Scholar 

  • Richard G, Izah SC, Ogwu MC (2022) Implications of artisanal crude oil refining on sustainable food production in the Niger delta region of Nigeria. J Environ Bioremed Toxicol 5(2):69–77. https://doi.org/10.54987/jebat.v5i2.775

    Article  Google Scholar 

  • Rohr JR, Salice CJ, Nisbet RM (2016) The pros and cons of ecological risk assessment based on data from different levels of biological organization. Crit Rev Toxicol 46:756–784. https://doi.org/10.1080/10408444.2016.1190685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Römbke J, Duis K (2018) Proposal for a monitoring concept for veterinary medicinal products with PBT properties, using parasiticides as a case study. Toxics 6:14. https://doi.org/10.3390/toxics6010014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rundlöf M, Andersson GKS, Bommarco R et al (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80. https://doi.org/10.1038/nature14420

    Article  CAS  PubMed  Google Scholar 

  • Sabarwal A, Kumar K, Singh RP (2018) Hazardous effects of chemical pesticides on human health—cancer and other associated disorders. Environ Toxicol Pharmacol 63:103–114

    CAS  PubMed  Google Scholar 

  • Sajjad A, Muhammad U, Asif S, Qaiser S, Azhar H (2021) Environmental and health effects of pesticide residues. Sustain Agric Rev 48:311–336

    Google Scholar 

  • Sankoh AI, Whittle R, Semple KT, Jones KC, Sweetman AJ (2016) An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environ Int 94:458–466

    CAS  PubMed  Google Scholar 

  • Sarker S, Dias Bernardes Gil J, Keeley J, Mohring N, Jansen K (2021) The use of pesticides in developing countries and their impact on health and the right to food. Rep., Policy Dep. Extern. Relat. Direct. Gen. Extern. Pol. Union, Eur. Parliam., Strasbourg. https://www.europarl.europa.eu/cmsdata/219887/Pesticides%20health%20and%20food.pdf

  • Schäfer RB, von der Ohe P, Rasmussen J et al (2012) Thresholds for the effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems. Environ Sci Technol 46:5134–5142. https://doi.org/10.1021/es2039882

    Article  CAS  PubMed  Google Scholar 

  • Schäfer A, Filser J, Frische T et al (2018) The silent spring—on the need for sustainable plant protection. German National Academy of Sciences Leopoldina, Halle. https://www.leopoldina.org/uploads/tx_leopublication/2018_Diskussionspapier_PflanzenschutzmittelEN_02.pdf

    Google Scholar 

  • Schäfer SK, Becker N, King L, Horsch A, Michael T (2019) The relationship between sense of coherence and posttraumatic stress: a meta-analysis. Eur J Psychotraumatol. 10(1):1562839. https://doi.org/10.1080/20008198.2018.1562839. PMID: 30693079; PMCID: PMC6338278

    Article  PubMed  PubMed Central  Google Scholar 

  • Schinasi L, Leon ME (2014) Non-Hodgkin lymphoma and occupational exposure to agricultural pesticidechemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health 11(4):4449–4527

    PubMed  PubMed Central  Google Scholar 

  • Serrano-Medina A, Ugalde-Lizarraga A, Bojorquez-Cuevas MS, Garnica-Ruiz J, Gonzalez-Corral MA et al (2019) Neuropsychiatric disorders in farmers associated with organophosphorus pesticide exposure in a rural village of Northwest Mexico. Int J Environ Res Public Health 16(5):689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shorette K (2012) Outcomes of global environmentalism: longitudinal and cross-national trends in chemical fertiliser and pesticide use. Oxford J 9(1):299–235

    Google Scholar 

  • Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:70

    PubMed  PubMed Central  Google Scholar 

  • Some S, Roy J, Ghose A (2019) Non-CO2 emission from cropland based agricultural activities in India: a decomposition analysis and policy link. J Clean Prod 225:637–646

    CAS  Google Scholar 

  • Somvanshi PS, Pandiaraj T, Singh RP (2020) An unexplored story of successful green revolution of India and steps towards ever green revolution. J Pharmacogn Phytochem 9(1):1270–1273

    Google Scholar 

  • Sreekumar KM, Prathapan KD (2013) A critique of the epidemiological studies on health in allegedly endosulfan-affected areas in Kasaragod, Kerala. Curr Sci 104(1):16–21

    Google Scholar 

  • Srivastava AL (2020) Chemical fertilizers and pesticides: role in groundwater contamination. In: Narasimha M, Prasad V (eds) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 143–159

    Google Scholar 

  • Srivastava AK, Kesavachandran C (2019) Health effects of pesticides. CRC Press, London

    Google Scholar 

  • Stehle S, Schulz R (2015) Pesticide authorization in the EU—environment unprotected? Environ Sci Pollut Res 22:19632. https://doi.org/10.1007/s11356-015-5148-5

    Article  CAS  Google Scholar 

  • Streissl F, Hooper MJ, Balbus JM, Clements W, Fritz A, Gouin T, Helm R, Hickey C, Landis W, Moe SJ (2012) The influence of global climate change on the scientific foundations and applications of environmental toxicology and chemistry: introduction to a SETAC international workshop. Environ Toxicol Chem 32(1):13–19

    Google Scholar 

  • Streissl F, Egsmose M, Tarazona JV (2018) Linking pesticide marketing authorisations with environmental impact assessments through realistic landscape risk assessment paradigms. Ecotoxicology 27:980–991. https://doi.org/10.1007/s10646-018-1962-0

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Briel M, Busse JW, You JJ, Akl EA, Mejza F et al (2012) Credibility of claims of subgroup effects in randomised controlled trials: systematic review. BMJ 344:e1553. https://doi.org/10.1136/bmj.e1553

    Article  PubMed  Google Scholar 

  • Sunam R, Mahat A (2020) Addressing water pollution from agriculture in South Asia. Policy Brief, Nov. https://www.caritas.ch/fileadmin/user_upload/Caritas_Schweiz/data/site/was-wirtun/engagement-weltweit/klima/Regional_Policy_Brief-SACB-Final-1_Feb_2021.pdf

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264. https://doi.org/10.1073/pnas.1116437108

    Article  PubMed  PubMed Central  Google Scholar 

  • Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R et al (2021) Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health 18(3):1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Udeigwe TK, Teboh JM, Eze PN, Stietiya MH, Kumar V et al (2015) Implications of leading crop production practices on environmental quality and human health. J Environ Manag 151:267–279

    CAS  Google Scholar 

  • UNEP (U.N. Environ Progr) (2021) Environmental and health impacts of pesticides and fertilizers and ways of minimizing them: envisioning a chemical safe world—summary for policymakers. Rep., UNEP, Nairobi. https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/34463/JSUNEPPF.pdf?sequence=13

  • United States Congress (1910) An act for preventing the manufacture, sale, or transportation of adulterated or misbranded Paris greens, lead arsenates, and other insecticides, and also fungicides, and for regulating traffic therein and for other purposes

    Google Scholar 

  • Utyasheva L, Eddleston M (2021) Prevention of pesticide suicides and the right to life: the intersectionof human rights and public health priorities. J Hum Rights 20:52–71

    Google Scholar 

  • Vijver MG, Hunting ER, Nederstigt TAP et al (2017) Postregistration monitoring of pesticides is urgently required to protect ecosystems. Environ Toxicol Chem 36:860–865. https://doi.org/10.1002/etc.3721

    Article  CAS  PubMed  Google Scholar 

  • Virag D, Naar Z, Kiss A (2007) Microbial toxicity of pesticide derivatives produced with UV photodegradation. Bull Environ Contam Toxicol 79(3):356–359

    CAS  PubMed  Google Scholar 

  • Wang X, Zhong W, Xiao B, Liu Q, Yang L et al (2019) Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: impacts of chemical properties and metabolism. Environ Int 125:25–32

    CAS  PubMed  Google Scholar 

  • WHO (World Health Organization) (2019) Global situation of pesticide management in agriculture and public health: report of a 2018 WHO-FAO survey. Rep., WHO, Geneva. https://apps.who.int/iris/handle/10665/329971

  • WHO (World Health Organization), UNEP (U.N. Environment Programme), eds. (1990) Public health impact of pesticides used in agriculture. Rep., WHO, Geneva

    Google Scholar 

  • Willy DK, Muyanga M, Jayne TS (2019) Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis. Land Use Policy 81:100–110

    Google Scholar 

  • World Future Council (2021) Future policy award on protection from hazardous chemicals. World Future Council. https://www.worldfuturecouncil.org/p/2021-protection-from-hazardous-chemicals

  • Zhang L, Yan C, Guo Q, Zhang J, Ruiz-Menjivar J (2018) The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int J Low-Carbon Technol 13(4):338–352

    Google Scholar 

  • Zhou S, Pan Y, Zhang L, Xue B, Zhang A, Jin M (2018) Biomagnification and enantiomeric profiles of organochlorine pesticides in food web components from Zhoushan Fishing Ground, China. Mar Pollut Bull 131(A):602–610

    Google Scholar 

  • Zhu W, Schmehl DR, Mullin CA, Frazier JL (2014) Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS One 9(1):1

    Google Scholar 

  • Zikankuba VL, Mwanyika G, Ntwenya JE, James A (2019) Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric 5:1601544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir Karounwi Adegoke Wahab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wahab, M.K.A., Iyiola, A.O., Abdulwahab, U.F. (2023). Mitigating the One Health Impacts of Agrochemicals Through Sustainable Policies and Regulations. In: Ogwu, M.C., Chibueze Izah, S. (eds) One Health Implications of Agrochemicals and their Sustainable Alternatives . Sustainable Development and Biodiversity, vol 34. Springer, Singapore. https://doi.org/10.1007/978-981-99-3439-3_8

Download citation

Publish with us

Policies and ethics