Skip to main content

Development of Novel Ligands That Modulate Innate-Like T Cells

  • Chapter
  • First Online:
New Tide of Natural Product Chemistry
  • 234 Accesses

Abstract

Innate-like T cells function as a bridge between innate and acquired immunity and play an important role in the initial immune response toward infection. Natural killer T (NKT) cells or mucosal-associated invariant T (MAIT) cells are classified as innate-like T cells, which are activated by the T cell receptor recognition of ligands present on MHC-like molecules (CD1d, MR1). Activated NKT or MAIT cells mediate various immune responses via cytokine production. Through the modification of natural ligands using synthetic organic chemistry, the author has been elucidating the molecular recognition mechanisms of NKT or MAIT cell activation and developing chemical tools or lead compounds for drug discovery. In this chapter, our recent structure–activity relationship (SAR) studies for developing novel innate-like T cell modulators would be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harly, C., Robert, J., Legoux, F., Lantz, O.: γδT, NKT, and MAIT cells during evolution: redundancy or specialized functions? J. Immunol. 209, 217–225 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. Turner, S.J., Godfrey, D.I., McCluskey, J.: T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015)

    Article  PubMed  Google Scholar 

  3. Van Rhijn, I., Godfrey, D.I., Rossjohn, J., Moody, D.B.: Lipid and small-molecule display by CD1 and MR1. Nat. Rev. Immunol. 15, 643–654 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brennan, P.J., Brigl, M., Brenner, M.B.: Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 13, 101–117 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. Wolf, B.J., Choi, J.E., Exley, M.A.: Novel approaches to exploiting invariant NKT cells in cancer immunotherapy. Front. Immunol. 9, 384 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bae, E.A., Seo, H., Kim, I.K., Jeon, I., Kang, C.Y.: Roles of NKT cells in cancer immunotherapy. Arch. Pharm. Res. 42, 543–548 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. Juno, J.A., Keynan, Y., Fowke, K.R.: Invariant NKT cells: regulation and function during viral infection. PLoS Pathog. 8, e1002838 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaya, M., Barral, P., Burbage, M., Aggarwal, S., Montaner, B., Warren Navia, A., Aid, M., Tsui, C., Maldonado, P., Nair, U., Ghneim, K., Fallon, P.G., Sekaly, R.P., Barouch, D.H., Shalek, A.K., Bruckbauer, A., Strid, J., Batista, F.D.: Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. Cell 172, 517–533 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Novak, J., Lehuen, A.: Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 53, 263–270 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Van Kaer, L., Wu, L.: Therapeutic potential of invariant natural killer T cells in autoimmunity. Front. Immunol. 9, 519 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kinjo, Y., Takatsuka, S., Kitano, N., Kawakubo, S., Abe, M., Ueno, K., Miyazaki, Y.: Functions of CD1d-restricted invariant natural killer T cells in antimicrobial immunity and potential applications for infection control. Front. Immunol. 9, 1266 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Laurent, X., Bertin, B., Renault, N., Farce, A., Speca, S., Milhomme, O., Millet, R., Desreumaux, P., Henon, E., Chavatte, P.: Switching Invariant Natural Killer T (iNKT) cell response from anticancerous to anti-inflammatory effect: molecular bases. J. Med. Chem. 57, 5489–5508 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Veldhoen, M.: Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol. 18, 612–621 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Morita, M., Motoki, K., Akimoto, K., Natori, T., Sakai, T., Sawa, E., Yamaji, K., Koezuka, Y., Kobayashi, E., Fukushima, H.: Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176–2187 (1995)

    Google Scholar 

  15. Li, X., Fujio, M., Imamura, M., Wu, D., Vasan, S., Wong, C.-H., Ho, D.D., Tsuji, M.: Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl. Acad. Sci. U.S.A. 107, 13010–13015 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyamoto, K., Miyake, S., Yamamura, T.: A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing Th2 bias of natural killer T cells. Nature 413, 531–534 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Kim, Y., Oh, K., Song, H., Lee, D.S., Park, S.B.: Synthesis and biological evaluation of α-galactosylceramide analogues with heteroaromatic rings and varying positions of a phenyl group in the sphingosine backbone. J. Med. Chem. 56, 7100–7109 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Pellicci, D. G., Patel, O., Kjer-Nielsen, L., Pang, S.S., Sullivan, L.C., Kyparissoudis, K., Brooks, A.G., Reid, H.H., Gras, S., Lucet, I.S., Koh, R., Smyth, M.J., Mallevaey, T., Matsuda, J. L., Gapin, L., McCluskey, J., Godfrey, D. I., Rossjohn, J.: Differential recognition of CD1d-α-galactosyl ceramide by the Vβ 8.2 and Vβ 7 semi-invariant NKT cell receptors. Immunity 31, 47–59 (2009)

    Google Scholar 

  19. Sullivan, B.A., Nagarajan, N.A., Wingender, G., Wang, J., Scott, I., Tsuji, M., Franck, R.W., Porcelli, S.A., Zajonc, D.M., Kronenberg, M.: Mechanisms for glycolipid antigen-driven cytokine polarization by Vα14i NKT cells. J. Immunol. 184, 141–153 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. Yu, K.O., Im, J.S., Molano, A., Dutronc, Y., Illarionov, P.A., Forestier, C., Fujiwara, N., Arias, I., Miyake, S., Yamamura, T., Chang, Y.T., Besra, G.S., Porcelli, S.A.: Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl. Acad. Sci. U.S.A. 102, 3383–3388 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandez, A., Scheraga, H.A.: Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proc. Natl. Acad. Sci. U.S.A. 100, 113–118 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Schmidtke, P., Barril, X.: Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J. Med. Chem. 53, 5858–5867 (2010)

    Google Scholar 

  23. Schmidtke, P., Luque, F.J., Murray, J.B., Barril, X.: Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J. Am. Chem. Soc. 133, 18903–18910 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. Gao, J., Bosco, D.A., Powers, E.T., Kelly, J.W.: Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Nat. Struct. Mol. Biol. 16, 684–690 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inuki, S., Aiba, T., Hirata, N., Ichihara, O., Yoshidome, D., Kita, S., Maenaka, K., Fukase, K., Fujimoto, Y.: Isolated polar amino acid residues modulate lipid binding in the large hydrophobic cavity of CD1d. ACS Chem. Biol. 11, 3132–3139 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Sakai, T., Ehara, H., Koezuka, Y.: Synthesis of NBD-α-galactosylceramide and its immunologic properties. Org. Lett. 1, 359–361 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Fujio, M., Wu, D., Garcia-Navarro, R., Ho, D.D., Tsuji, M., Wong, C.H.: Structure-based discovery of glycolipids for CD1d-mediated NKT cell activation: tuning the adjuvant versus immunosuppression activity. J. Am. Chem. Soc. 128, 9022–9023 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Baek, D.J., Lee, Y.S., Lim, C., Lee, D., Lee, T., Lee, J.Y., Lee, K.A., Cho, W.J., Kang, C.Y., Kim, S.: Rational design and evaluation of a branched-chain-containing glycolipid antigen that binds to CD1d. Chem. Asian J. 5, 1560–1564 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. Lim, C., Kim, J.H., Baek, D.J., Lee, J.Y., Cho, M., Lee, Y.S., Kang, C.Y., Chung, D.H., Cho, W.J., Kim, S.: Design and evaluation of ω-hydroxy fatty acids containing α-GalCer analogues for CD1d-mediated NKT cell activation. ACS Med. Chem. Lett. 5, 331–335 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hossain, M.I., Hanashima, S., Nomura, T., Lethu, S., Tsuchikawa, H., Murata, M., Kusaka, H., Kita, S., Maenaka, K.: Synthesis and Th1-immunostimulatory activity of α-galactosylceramide analogues bearing a halogen-containing or selenium-containing acyl chain. Bioorg. Med. Chem. 24, 3687–3695 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Fan, G.-T., Pan, Y.-S., Lu, K.-C., Cheng, Y.-P., Lin, W.-C., Lin, S., Lin, C.-H., Wong, C.-H., Fang, J.-M., Lin, C.-C.: Synthesis of α-galactosyl ceramide and the related glycolipids for evaluation of their activities on mouse splenocytes. Tetrahedron 61, 1855–1862 (2005)

    Article  CAS  Google Scholar 

  32. Kunishima, M., Kawachi, C., Hioki, K., Terao, K., Tani, S.: Formation of carboxamides by direct condensation of carboxylic acids and amines in alcohols using a new alcohol- and water-soluble condensing agent: DMT-MM. Tetrahedron 57, 1551–1558 (2001)

    Article  CAS  Google Scholar 

  33. Sidobre, S., Hammond, K.J., Benazet-Sidobre, L., Maltsev, S.D., Richardson, S.K., Ndonye, R.M., Howell, A.R., Sakai, T., Besra, G.S., Porcelli, S.A., Kronenberg, M.: The T cell antigen receptor expressed by Vα14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proc. Natl. Acad. Sci. U.S.A. 101, 12254–12259 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, X., Shiratsuchi, T., Chen, G., Dellabona, P., Casorati, G., Franck, R.W., Tsuji, M.: Invariant TCR rather than CD1d shapes the preferential activities of C-glycoside analogues against human versus murine invariant NKT cells. J. Immunol. 183, 4415–4421 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Zeissig, S., Olszak, T., Melum, E., Blumberg, R.S.: Analyzing antigen recognition by natural killer T cells. Methods Mol. Biol. 960, 557–572 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inuki, S., Kashiwabara, E., Hirata, N., Kishi, J., Nabika, E., Fujimoto, Y.: Potent Th2 cytokine bias of natural killer T cell by CD1d glycolipid ligands: anchoring effect of polar groups in the lipid component. Angew. Chem. Int. Ed. 57, 9655–9659 (2018)

    Google Scholar 

  37. Nyambayar, D., Iwabuchi, K., Hedlund, E., Murakawa, S., Shirai, K., Iwabuchi, C., Kon, Y., Miyazaki, Y., Yanagawa, Y., Onoe, K.: Characterization of NKT-cell hybridomas expressing invariant T-cell antigen receptors. J. Clin. Exp. Hematop. 47, 1–8 (2007)

    Article  PubMed  Google Scholar 

  38. Goff, R.D., Gao, Y., Matther, J., Zhou, D., Yin, N., Cantu, C., Teyton, L., Bendelac, A., Savage, P.B.: Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 126, 13602–13603 (2004)

    Google Scholar 

  39. Bai, L., Sagiv, Y., Liu, Y., Freigang, S., Yu, K.O., Teyton, L., Porcelli, S.A., Savage, P.B., Bendelac, A.: Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen α-GalCer. Proc. Natl. Acad. Sci. U.S.A. 106, 10254–10259 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Im, J.S., Arora, P., Bricard, G., Molano, A., Venkataswamy, M.M., Baine, I., Jerud, E.S., Goldberg, M.F., Baena, A., Yu, K.O., Ndonye, R.M., Howell, A.R., Yuan, W., Cresswell, P., Chang, Y.T., Illarionov, P.A., Besra, G.S., Porcelli, S.A.: Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30, 888–898 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, K.O., Im, J.S., Illarionov, P.A., Ndonye, R.M., Howell, A.R., Besra, G.S., Porcelli, S.A.: Production and characterization of monoclonal antibodies against complexes of the NKT cell ligand α-galactosylceramide bound to mouse CD1d. J. Immunol. Methods 323, 11–23 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kishi, J., Inuki, S., Hirata, N., Kashiwabara, E., Yoshidome, D., Ichihara, O., Fujimoto, Y.: Structure-activity relationship studies of Bz amide-containing α-GalCer derivatives as natural killer T cell modulators. Bioorg. Med. Chem. Lett. 29, 970–973 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. Inuki, S., Hirata, N., Kashiwabara, E., Kishi, J., Aiba, T., Teratani, T., Nakamura, W., Kojima, Y., Maruyama, T., Kanai, T., Fujimoto, Y.: Polar functional group-containing glycolipid CD1d ligands modulate cytokine-biasing responses and prevent experimental colitis. Sci. Rep. 10, 15766 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kishi, J., Inuki, S., Kashiwabara, E., Suzuki, T., Dohmae, N., Fujimoto, Y.: Design and discovery of covalent α-GalCer derivatives as potent CD1d ligands. ACS Chem. Biol. 15, 353–359 (2020)

    Article  CAS  PubMed  Google Scholar 

  45. Le Bourhis, L., Martin, E., Peguillet, I., Guihot, A., Froux, N., Core, M., Levy, E., Dusseaux, M., Meyssonnier, V., Premel, V., Ngo, C., Riteau, B., Duban, L., Robert, D., Rottman, M., Soudais, C., Lantz, O.: Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010)

    Article  PubMed  Google Scholar 

  46. Dusseaux, M., Martin, E., Serriari, N., Peguillet, I., Premel, V., Louis, D., Milder, M., Le Bourhis, L., Soudais, C., Treiner, E., Lantz, O.: Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161(Hi) IL-17-secreting T cells. Blood 117, 1250–1259 (2011)

    Article  CAS  PubMed  Google Scholar 

  47. Godfrey, D.I., Koay, H.F., McCluskey, J., Gherardin, N.A.: The biology and functional importance of MAIT cells. Nat. Immunol. 20, 1110–1128 (2019)

    Article  CAS  PubMed  Google Scholar 

  48. Treiner, E., Duban, L., Bahram, S., Radosavljevic, M., Wanner, V., Tilloy, F., Affaticati, P., Gilfillan, S., Lantz, O.: Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. Reantragoon, R., Corbett, A.J., Sakala, I.G., Gherardin, N.A., Furness, J.B., Chen, Z.J., Eckle, S.B.G., Uldrich, A.P., Birkinshaw, R.W., Patel, O., Kostenko, L., Meehan, B., Kedzierska, K., Liu, L.G., Fairlie, D.P., Hansen, T.H., Godfrey, D.I., Rossjohn, J., McCluskey, J., Kjer-Nielsen, L.: Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305–2320 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Godfrey, D.I., Uldrich, A.P., McCluskey, J., Rossjohn, J., Moody, D.B.: The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. Kjer-Nielsen, L., Patel, O., Corbett, A.J., Le Nours, J., Meehan, B., Liu, L.G., Bhati, M., Chen, Z.J., Kostenko, L., Reantragoon, R., Williamson, N.A., Purcell, A.W., Dudek, N.L., McConville, M.J., O’Hair, R.A.J., Khairallah, G.N., Godfrey, D.I., Fairlie, D.P., Rossjohn, J., McCluskey, J.: MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. Eckle, S.B.G., Corbett, A.J., Keller, A.N., Chen, Z.J., Godfrey, D.I., Liu, L.G., Mak, J.Y.W., Fairlie, D.P., Rossjohn, J., McCluskey, J.: Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J. Biol. Chem. 290, 30204–30211 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meierovics, A.I., Cowley, S.C.: MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection. J. Exp. Med. 213, 2793–2809 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McWilliam, H.E.G., Eckle, S.B.G., Theodossis, A., Liu, L.G., Chen, Z.J., Wubben, J.M., Fairlie, D.P., Strugnell, R.A., Mintern, J.D., McCluskey, J., Rossjohn, J., Villadangos, J.A.: The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1. Nat. Immunol. 17, 531–537 (2016)

    Article  CAS  PubMed  Google Scholar 

  55. Toubal, A., Nel, I., Lotersztajn, S., Lehuen, A.: Mucosal-associated invariant T cells and disease. Nat. Rev. Immunol. 19, 643–657 (2019)

    Article  CAS  PubMed  Google Scholar 

  56. Keller, A.N., Eckle, S.B.G., Xu, W.J., Liu, L.G., Hughes, V.A., Mak, J.Y.W., Meehan, B.S., Pediongco, T., Birkinshaw, R.W., Chen, Z.J., Wang, H.M., D’Souza, C., Kjer-Nielsen, L., Gherardin, N.A., Godfrey, D.I., Kostenko, L., Corbett, A.J., Purcell, A.W., Fairlie, D.P., McCluskey, J., Rossjohn, J.: Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat. Immunol. 18, 402–411 (2017)

    Article  CAS  PubMed  Google Scholar 

  57. Corbett, A.J., Eckle, S.B.G., Birkinshaw, R.W., Liu, L.G., Patel, O., Mahony, J., Chen, Z.J., Reantragoon, R., Meehan, B., Cao, H.W., Williamson, N.A., Strugnell, R.A., Van Sinderen, D., Mak, J.Y.W., Fairlie, D.P., Kjer-Nielsen, L., Rossjohn, J., McCluskey, J.: T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. Awad, W., Le Nours, J., Kjer-Nielsen, L., McCluskey, J., Rossjohn, J.: Mucosal-associated invariant T cell receptor recognition of small molecules presented by MR1. Immunol. Cell Biol. 96, 588–597 (2018)

    Article  CAS  PubMed  Google Scholar 

  59. Mak, J.Y.W., Xu, W., Reid, R.C., Corbett, A.J., Meehan, B.S., Wang, H., Chen, Z., Rossjohn, J., McCluskey, J., Liu, L., Fairlie, D.P.: Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells. Nat. Commun. 8, 14599 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  60. Braganza, C.D., Shibata, K., Fujiwara, A., Motozono, C., Sonoda, K.H., Yamasaki, S., Stocker, B.L., Timmer, M.S.M.: The effect of MR1 ligand glyco-analogues on mucosal-associated invariant T (MAIT) cell activation. Org. Biomol. Chem. 17, 8992–9000 (2019)

    Article  CAS  PubMed  Google Scholar 

  61. Ler, G.J.M., Xu, W.J., Mak, J.Y.W., Liu, L.G., Bernhardt, P.V., Fairlie, D.P.: Computer modelling and synthesis of deoxy and monohydroxy analogues of a ribitylaminouracil bacterial metabolite that potently activates human T cells. Chem. Eur. J. 25, 15594–15608 (2019)

    Article  CAS  PubMed  Google Scholar 

  62. Lange, J., Anderson, R.J., Marshall, A.J., Chan, S.T.S., Bilbrough, T.S., Gasser, O., Gonzalez-Lopez, C., Salio, M., Cerundolo, V., Hermans, I.F., Painter, G.F.: The chemical synthesis, stability, and activity of MAIT cell prodrug agonists that access MR1 in recycling endosomes. ACS Chem. Biol. 15, 437–445 (2020)

    Article  CAS  PubMed  Google Scholar 

  63. Awad, W., Ler, G.J.M., Xu, W.J., Keller, A.N., Mak, J.Y.W., Lim, X.Y., Liu, L.G., Eckle, S.B.G., Le Nours, J.M., McCluskey, J., Corbett, A.J., Fairlie, D.P., Rossjohn, J.: The molecular basis underpinning the potency and specificity of MAIT cell antigens. Nat. Immunol. 21, 400–411 (2020)

    Article  CAS  PubMed  Google Scholar 

  64. Braganza, C.D., Motozono, C., Sonoda, K.H., Yamasaki, S., Shibata, K., Timmer, M.S.M., Stocker, B.L.: Agonistic or antagonistic Mucosal-Associated Invariant T (MAIT) cell activity is determined by the 6-alkylamino substituent on uracil MR1 ligands. Chem. Commun. 56, 5291–5294 (2020)

    Article  CAS  Google Scholar 

  65. Matsuoka, T., Motozono, C., Hattori, A., Kakeya, H., Yamasaki, S., Oishi, S., Ohno, H., Inuki, S.: The effects of 5-OP-RU stereochemistry on its stability and MAIT-MR1 axis. ChemBioChem 22, 672–678 (2021)

    Article  CAS  PubMed  Google Scholar 

  66. Li, K.L., Vorkas, C.K., Chaudhry, A., Bell, D.L., Willis, R.A., Rudensky, A., Altman, J.D., Glickman, M.S., Aube, J.: Synthesis, stabilization, and characterization of the MR1 ligand precursor 5-amino-6-D-ribitylaminouracil (5-A-RU). PLoS ONE 13, e0191837 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  67. Peterson, K.E., Cinelli, M.A., Morrell, A.E., Mehta, A., Dexheimer, T.S., Agama, K., Antony, S., Pommier, Y., Cushman, M.: Alcohol-, diol-, and carbohydrate-substituted indenoisoquinolines as topoisomerase I inhibitors: investigating the relationships involving stereochemistry, hydrogen bonding, and biological activity. J. Med. Chem. 54, 4937–4953 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamaguchi, H., Hirai, M., Kurosawa, Y., Hashimoto, K.: A Highly conserved major histocompatibility complex class I-related gene in mammals. Biochem. Biophys. Res. Commun. 238, 697–702 (1997)

    Article  CAS  PubMed  Google Scholar 

  69. Eckle, S.B.G., Birkinshaw, R.W., Kostenko, L., Corbett, A.J., McWilliam, H.E.G., Reantragoon, R., Chen, Z.J., Gherardin, N.A., Beddoe, T., Liu, L.G., Patel, O., Meehan, B., Fairlie, D.P., Villadangos, J.A., Godfrey, D.I., Kjer-Nielsen, L., McCluskey, J., Rossjohn, J.: A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J. Exp. Med. 211, 1585–1600 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koay, H.F., Gherardin, N.A., Xu, C., Seneviratna, R., Zhao, Z., Chen, Z.J., Fairlie, D.P., McCluskey, J., Pellicci, D.G., Uldrich, A.P., Godfrey, D.I.: Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 10, 2243 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere and wholehearted appreciation to Professor Hiroaki Ohno (Graduate School of Pharmaceutical Sciences, Kyoto University) and Professor Yukari Fujimoto (Department of Chemistry, Faculty of Science and Technology, Keio University) for their kind guidance, constructive discussions and constant encouragement during this study. The author would like to thank Dr. Osamu Ichihara and Mr. Daisuke Yoshidome (Schrödinger K. K.) for their support with MD simulation, and Professor. Sho Yamasaki (Research Institute for Microbial Diseases, Osaka University) for his professional guidance on the MAIT cell activation assay. The author is grateful to all the colleagues of the Department of Bioorganic Medicinal Chemistry (Graduate School of Pharmaceutical Sciences, Kyoto University) and the laboratory of Biomolecular Chemistry (Department of Chemistry, Faculty of Science and Technology, Keio University) for their valuable comments and their assistance and cooperation in various experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Inuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inuki, S. (2023). Development of Novel Ligands That Modulate Innate-Like T Cells. In: Ishikawa, H., Takayama, H. (eds) New Tide of Natural Product Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-99-1714-3_17

Download citation

Publish with us

Policies and ethics