Skip to main content

Pseudotyped Viruses for Influenza

  • Chapter
  • First Online:
Pseudotyped Viruses

Abstract

We have developed an influenza hemagglutinin (HA) pseudotype (PV) library encompassing all influenza A (IAV) subtypes from HA1-HA18, influenza B (IBV) subtypes (both lineages), representative influenza C (ICV), and influenza D (IDV) viruses. These influenza HA (or hemagglutinin-esterase fusion (HEF) for ICV and IDV) pseudotypes have been used in a pseudotype microneutralization assay (pMN), an optimized luciferase reporter assay, that is highly sensitive and specific for detecting neutralizing antibodies against influenza viruses. This has been an invaluable tool in detecting the humoral immune response against specific hemagglutinin or hemagglutinin-esterase fusion proteins for IAV to IDV in serum samples and for screening antibodies for their neutralizing abilities. Additionally, we have also produced influenza neuraminidase (NA) pseudotypes for IAV N1-N9 subtypes and IBV lineages. We have utilized these NA-PV as surrogate antigens in in vitro assays to assess vaccine immunogenicity. These NA PV have been employed as the source of neuraminidase enzyme activity in a pseudotype enzyme-linked lectin assay (pELLA) that is able to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies, and postvaccination sera. Here we show the production of influenza HA, HEF, and NA PV and their employment as substitutes for wild-type viruses in influenza serological and neutralization assays. We also introduce AutoPlate, an easily accessible web app that can analyze data from pMN and pELLA quickly and efficiently, plotting inhibition curves and calculating half-maximal concentration (IC50) neutralizing antibody titers. These serological techniques coupled with user-friendly analysis tools are faster, safer, inexpensive alternatives to classical influenza assays while also offering the reliability and reproducibility to advance influenza research and make it more accessible to laboratories around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palese, P.: Influenza: old and new threats. Nat. Med. 10, S82–S87 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Bouvier, N.M., Lowen, A.C.: Animal models for influenza virus pathogenesis and transmission. Viruses. 2, 1530–1563 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Petrova, V.N., Russell, C.A.: The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 16, 47–60 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. World Health Organization: A checklist for pandemic influenza risk and impact management: building capacity for pandemic response. World Health Organization (2018)

    Google Scholar 

  5. Ferguson, L., et al.: Pathogenesis of influenza D virus in cattle. J. Virol. 90, 5636–5642 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Webster, R.G., Rott, R.: Influenza virus a pathogenicity: the pivotal role of hemagglutinin. Cell. 50, 665–666 (1987)

    Article  CAS  PubMed  Google Scholar 

  7. Neumann, G., Kawaoka, Y.: Transmission of influenza A viruses. Virology. 479–480, 234–246 (2015)

    Article  PubMed  Google Scholar 

  8. Putri, W.C.W.S., Muscatello, D.J., Stockwell, M.S., Newall, A.T.: Economic burden of seasonal influenza in the United States. Vaccine. 36, 3960–3966 (2018)

    Article  PubMed  Google Scholar 

  9. Dawood, F.S., et al.: Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect. Dis. 12, 687–695 (2012)

    Article  PubMed  Google Scholar 

  10. Wiley, D.C.: The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56, 365–394 (1987)

    Article  CAS  PubMed  Google Scholar 

  11. Gottschalk, A.: The influenza virus neuraminidase. Nature. 181, 377–378 (1958)

    Article  CAS  PubMed  Google Scholar 

  12. Gottschalk, A.: Neuraminidase: the specific enzyme of influenza virus and vibrio cholerae. Biochim. Biophys. Acta. 23, 645–646 (1957)

    Article  CAS  PubMed  Google Scholar 

  13. McAuley, J.L., Gilbertson, B.P., Trifkovic, S., Brown, L.E., McKimm-Breschkin, J.L.: Influenza virus neuraminidase structure and functions. Front. Microbiol. 10, 39 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hause, B.M., et al.: Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses. PLoS Pathog. 9, e1003176 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cauldwell, A.V., Long, J.S., Moncorgé, O., Barclay, W.S.: Viral determinants of influenza A virus host range. J. Gen. Virol. 95, 1193–1210 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Long, J.S., Mistry, B., Haslam, S.M., Barclay, W.S.: Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17, 67–81 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. Gamblin, S.J., Skehel, J.J.: Influenza hemagglutinin and neuraminidase membrane glycoproteins. J. Biol. Chem. 285, 28403–28409 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Russell, C.J., Hu, M., Okda, F.A.: Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 26, 841–853 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fineberg, H.V.: Pandemic preparedness and response—lessons from the H1N1 influenza of 2009. N. Engl. J. Med. 370, 1335–1342 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Rabozzi, G., et al.: Emerging zoonoses: the “one health approach”. Saf. Health Work. 3, 77–83 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neumann, G., Kawaoka, Y.: Predicting the next influenza pandemics. J. Infect. Dis. 219, S14–S20 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. Zecchin, B., et al.: Evolutionary dynamics of H5 highly pathogenic avian influenza viruses (clade 2.3.4.4B) circulating in Bulgaria in 2019–2021. Viruses. 13, 2086 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, R., et al.: Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 368, 1888–1897 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Guo, Y., et al.: Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza. Virol. J. 6, 39 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu, D., et al.: The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019. Eur. Secur. 24 (2019)

    Google Scholar 

  26. Chen, L.-M., et al.: In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology. 422, 105–113 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. Stech, O., et al.: Acquisition of a Polybasic Hemagglutinin Cleavage Site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain. J. Virol. 83, 5864–5868 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, M., Chen, M., Tan, Y.: An avian influenza A (H7N9) virus with polybasic amino acid insertion was found in human infection in southern China, Guangxi, February 2017. Infect. Dis. 50, 71–74 (2018)

    Article  Google Scholar 

  29. Huo, X., et al.: Significantly elevated number of human infections with H7N9 virus in Jiangsu in eastern China, October 2016 to January 2017. Eur. Secur. 22 (2017)

    Google Scholar 

  30. Imai, M., Kawaoka, Y.: The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr. Opin. Virol. 2, 160–167 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taubenberger, J.K., Kash, J.C.: Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe. 7, 440–451 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taubenberger, J.K., Morens, D.M.: Influenza: the once and future pandemic. Public Health Rep. 125, 15–26 (2010)

    Article  Google Scholar 

  33. Grohskopf, L.A., et al.: Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices—United States, 2018–19 influenza season. 67, 24 (2018)

    Google Scholar 

  34. Iuliano, A.D., et al.: Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet. 391, 1285–1300 (2018)

    Article  PubMed  Google Scholar 

  35. Ran, Z., et al.: Domestic pigs are susceptible to infection with influenza B viruses. J. Virol. 89, 4818–4826 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hanson, A., et al.: Identification of stabilizing mutations in an H5 hemagglutinin influenza virus protein. J. Virol. 90, 2981–2992 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  37. Koutsakos, M., Wheatley, A.K., Laurie, K., Kent, S.J., Rockman, S.: Influenza lineage extinction during the COVID-19 pandemic? Nat. Rev. Microbiol. 19, 741–742 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cox, R.J., Brokstad, K.A., Ogra, P.: Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand. J. Immunol. 59, 1–15 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. Gianchecchi, E., et al.: How to assess the effectiveness of nasal influenza vaccines? Role and measurement of sIgA in mucosal secretions. Influenza Other Respir. Viruses. 13, 429–437 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paules, C.I., Marston, H.D., Eisinger, R.W., Baltimore, D., Fauci, A.S.: The pathway to a universal influenza vaccine. Immunity. 47, 599–603 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. Sautto, G.A., Kirchenbaum, G.A., Ross, T.M.: Towards a universal influenza vaccine: different approaches for one goal. Virol. J. 15, 17 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Long, B.C., Goldberg, T.L., Swenson, S.L., Erickson, G., Scherba, G.: Adaptation and limitations of established hemagglutination inhibition assays for the detection of porcine anti—swine influenza virus H1N2 antibodies. J. Vet. Diagn. Investig. 16, 264–270 (2004)

    Article  Google Scholar 

  43. Kumar, A., Meldgaard, T.S., Bertholet, S.: Novel platforms for the development of a universal influenza vaccine. Front. Immunol. 9, 600 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Del Rosario, J.M.M., et al.: Exploiting pan influenza A and pan influenza B Pseudotype libraries for efficient vaccine antigen selection. Vaccine. 9 (2021)

    Google Scholar 

  45. Ferrara, F., et al.: Development of lentiviral vectors Pseudotyped with influenza B hemagglutinins: application in vaccine immunogenicity, mAb potency, and Sero-surveillance studies. Front. Immunol. 12 (2021)

    Google Scholar 

  46. da Costa, K.A.S., et al.: Influenza A (N1-N9) and Influenza B (B/Victoria and B/Yamagata) Neuraminidase Pseudotypes as tools for pandemic preparedness and improved influenza vaccine. 10 (2022)

    Google Scholar 

  47. Garcia, J.-M., Lai, J.C.: Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev. Anti-Infect. Ther. 9, 443–455 (2011)

    Article  PubMed  Google Scholar 

  48. Duvergé, A., Negroni, M.: Pseudotyping lentiviral vectors: when the clothes make the virus. Viruses. 12, 1311 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Naldini, L., et al.: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272, 263–267 (1996)

    Article  CAS  PubMed  Google Scholar 

  50. Ferrara, F., Temperton, N.: Pseudotype neutralization assays: from laboratory bench to data analysis. Methods Protoc. 1, 8 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Del Rosario, J.M.M., et al.: Protection from influenza by intramuscular gene vector delivery of a broadly neutralizing nanobody does not depend on antibody dependent cellular cytotoxicity. Front. Immunol. 11 (2020)

    Google Scholar 

  52. Ekiert, D.C., Wilson, I.A.: Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr. Opin. Virol. 2, 134–141 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ekiert, D.C., et al.: A highly conserved neutralizing epitope on group 2 influenza A viruses. Science. 333, 843–850 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dreyfus, C., et al.: Highly conserved protective epitopes on influenza B viruses. Science. 337, 1343–1348 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ekiert, D.C., et al.: Antibody recognition of a highly conserved influenza virus epitope. Science. 324, 246–251 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Corti, D., et al.: A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 333, 850–856 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. Nie, J., et al.: Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc. 15, 3699–3715 (2020)

    Article  CAS  PubMed  Google Scholar 

  58. Sampson, A.T., et al.: Coronavirus Pseudotypes for all circulating human coronaviruses for quantification of cross-neutralizing antibody responses. Viruses. 13 (2021)

    Google Scholar 

  59. Rijal, P., et al.: Broadly inhibiting Antineuraminidase monoclonal antibodies induced by trivalent influenza vaccine and H7N9 infection in humans. J. Virol. 94, 17 (2020)

    Article  Google Scholar 

  60. Madsen, A., et al.: Human antibodies targeting influenza B virus neuraminidase active site are broadly protective. Immunity. 53, 852–863.e7 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stadlbauer, D., et al.: Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science. 366, 499–504 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Estrada, L.D., Schultz-Cherry, S.: Development of a universal influenza vaccine. J. Immunol. 202, 392–398 (2019)

    Article  CAS  PubMed  Google Scholar 

  63. Krammer, F., et al.: NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? mBio. 9 (2018)

    Google Scholar 

  64. Klasse, P.J., Sattentau, Q.J.: Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J. Gen. Virol. 83, 2091–2108 (2002)

    Article  CAS  PubMed  Google Scholar 

  65. Potier, M., Mameli, L., Bélisle, M., Dallaire, L., Melançon, S.B.: Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal. Biochem. 94, 287–296 (1979)

    Article  CAS  PubMed  Google Scholar 

  66. Eichelberger, M.C., et al.: Comparability of neuraminidase inhibition antibody titers measured by enzyme-linked lectin assay (ELLA) for the analysis of influenza vaccine immunogenicity. Vaccine. 34, 458–465 (2016)

    Article  CAS  PubMed  Google Scholar 

  67. Biuso, F., et al.: Use of lentiviral pseudotypes as an alternative to reassortant or triton X-100-treated wild-type influenza viruses in the neuraminidase inhibition enzyme-linked lectin assay. Influenza Other Respir. Viruses. 13, 504–516 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lambré, C.R., Terzidis, H., Greffard, A., Webster, R.G.: Measurement of anti-influenza neuraminidase antibody using a peroxidase-linked lectin and microtitre plates coated with natural substrates. J. Immunol. Methods. 135, 49–57 (1990)

    Article  PubMed  Google Scholar 

  69. Ritz, C., Baty, F., Streibig, J.C., Gerhard, D.: Dose-response analysis using R. PLoS One. 10, e0146021 (2016)

    Article  Google Scholar 

  70. Palmer, P., et al.: AutoPlate: rapid dose-response curve analysis for biological assays. Front. Immunol. 12 (2022)

    Google Scholar 

  71. Temperton, N.J., et al.: A sensitive retroviral pseudotype assay for influenza H5N1-neutralizing antibodies. Influenza Other Respir. Viruses. 1, 105–112 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L., Trono, D.: Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997)

    Article  CAS  PubMed  Google Scholar 

  73. Böttcher, E., et al.: Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J. Virol. 80, 9896–9898 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  74. Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.-D.: Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. 101, 4620–4624 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kirkpatrick, E., Qiu, X., Wilson, P.C., Bahl, J., Krammer, F.: The influenza virus hemagglutinin head evolves faster than the stalk domain. Sci. Rep. 8, 10432 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nachbagauer, R., et al.: A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 27, 106–114 (2021)

    Article  CAS  PubMed  Google Scholar 

  77. Chen, Y.-Q., Lan, L.Y.-L., Huang, M., Henry, C., Wilson, P.C.: Hemagglutinin stalk-reactive antibodies interfere with influenza virus neuraminidase activity by steric hindrance. J. Virol. 93 (2019)

    Google Scholar 

  78. Carnell, G.W., Trombetta, C.M., Ferrara, F., Montomoli, E., Temperton, N.J.: Correlation of influenza B haemagglutination Inhibiton, single-radial haemolysis and Pseudotype-based microneutralisation assays for immunogenicity testing of seasonal vaccines. Vaccine. 9 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel J. Temperton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Del Rosario, J.M.M., da Costa, K.A.S., Temperton, N.J. (2023). Pseudotyped Viruses for Influenza. In: Wang, Y. (eds) Pseudotyped Viruses. Advances in Experimental Medicine and Biology, vol 1407. Springer, Singapore. https://doi.org/10.1007/978-981-99-0113-5_8

Download citation

Publish with us

Policies and ethics