Abstract
The pressure is updated for the particles on the surface layer of the wall which is in contact with the fluid, but the pressure is not calculated for the dummy particles, which are arranged behind the surface-layer particles and are not in contact with the fluid.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graphics 26(3), 48 (2007)
Amicarelli, A., Albano, R., Mirauda, D., Agate, G., Sole, A., Guandalini, R.: A smoothed particle hydrodynamics model for 3D solid body transport in free surface flow. Comput. Fluids 116, 205–228 (2015)
Arai, J., Koshizuka, S., Murozono, K.: Large eddy simulation and a simple wall model for turbulent flow calculation by a particle method. Int. J. Numer. Meth. Fluids 71, 772–787 (2013)
Balsara, D.: Von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms. J. Comput. Phys. 121, 357–372 (1995)
Barnes, J.E., Hut, P.: A hierarchical O(NlogN) forced-calculation algorithm. Nature 324, 446–449 (1986)
Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10, 199–229 (1992)
Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M.: Nonlinear water wave interaction with floating bodies in SPH. J. Fluids Struct. 42, 112–129 (2013)
Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191(2), 448–475 (2003)
Dalrymple, R., Rogers, B.: Numerical modeling of water waves with the SPH method. Coastal Eng. 53, 141–147 (2006)
Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47, 271–306 (1959) (translated US Joint Publ. Res. Service, JPRS 7226, 1969)
Gomez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Dominguez, J.M.: SPHysics—development of a free-surface fluid solver—Part 1: theory and formulations. Comput. Geosci. 48, 289–299 (2012)
Gotoh, H., Shibahara, T., Sakai, T.: Sub-particle-scale turbulence model for the MPS method—Lagrangian flow model for hydraulic engineering. Comput. Fluid Dyn. J. 9(4), 339–347 (2001)
Gotoh, H., Ikari, H., Memita, T., Sakai, T.: Lagrangian particle method for simulation of wave overtopping on a vertical seawall. Coast. Eng. J. 47, 157–181 (2005)
Gotoh, H., Shao, S., Memita, T.: SPH-LES model for wave dissipation using a curtain wall. Annu. J. Hydraulic Eng. JSCE 47, 397–402 (2003)
Gotoh, H., Ikari, H., Sakai, T., Oku, K.: 3D numerical simulation of tsunami flood with floating bodies. Annu. J. Coastal Eng. JSCE 53, 196–200 (2006) (in Japanese)
Gotoh, H., Ikari, H., Sakai, T., Oku, K.: 3D simulation of blocking of bridge in mountain stream by drift woods. Annu. J. Hydraulic Eng. JSCE 51, 835–840 (2007) (in Japanese)
Gotoh, H.: Suuchi Ryusha Suirigaku (Computational Mechanics of Sediment Transport). Morikita Publishing (2004) (in Japanese)
Harten, A., Lax, P., van Leer, B.: On upstream differencing and Godunov type methods for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)
Hirakuchi, H., Kajima, R., Kawaguchi, T.: Application of a piston-type absorbing wave-maker to irregular wave experiment. Coast. Eng. Japan 33(1), 11–24 (1990)
Hirsch, C.: Numerical computation of internal and external flows—Vol. 2: Computational methods for inviscid and viscous flows. Wiley, New York (1992)
Inutsuka, S.: Reformulation of smoothed particle hydrodynamics with Riemann solver. J. Comput. Phys. 179, 238–267 (2002)
Khayyer, A., Gotoh, H., Shao, S.D.: Enhanced predictions of wave impact pressure by improved incompressible SPH methods. Appl. Ocean Res. 31(2), 111–131 (2009)
Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci. Eng. 123, 421–434 (1996)
Koshizuka, S., Nobe, A., Oka, Y.: Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Mech. Fluids 26, 751–769 (1998)
Koshizuka, S.: Ryushiho. Maruzen Publishing (2005) (in Japanese)
Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., Stansby, P.: Comparisons of weakly-compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227(18), 8417–8436 (2008)
Ma, Q.W., Zhou, J.T.: MLPG-R method for numerical simulation of 2D breaking waves. Comput. Modeling Eng. Sci. 43(3), 277–304 (2009)
Molteni, D., Bilello, C.: Riemann solver in SPH. Mem. S. A. It. Suppl. 1, 36 (2003)
Monaghan, J.J.: Particle methods for hydrodynamics. Comput. Phys. Rep. 3(2), 71–124 (1985)
Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82, 1–15 (1989)
Monaghan, J.J.: SPH compressible turbulence. Mon. Notices R. Astronom. Soc. 335(3), 843–852 (2002)
Ren, B., He, M., Dong, P., Wen, H.: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method. Appl. Ocean Res. 50, 1–12 (2015)
Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)
Shao, S.: Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling. Int. J. Numer. Methods Fluids 50(5), 597–621 (2006)
Shibata, K., Murozono, K., Kondo, M., Sakai, M., Koshizuka, S.: Numerical modeling of gas-phase pressure, negative pressure and curl operator by the MPS method. In: Proceedings on 17th Conference Computer Engineering and Science, C:2–3 (2012) (in Japanese)
Smagorinsky, J.: General circulation experiments with the primitive equation—I. the basic experiment. Monthly Weather Rev. 91, 99–164 (1963)
Tanaka, M., Masunaga, T., Nakagawa, Y.: Multi-resolution MPS method. Trans. JSCES, Paper No. 20090001 (2009) (in Japanese)
Tanaka, M., Masunaga, T.: Stabilization and smoothing of pressure in MPS method by quasi-compressibility. J. Comput. Phys. 229, 4279–4290 (2010)
Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)
Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin (1997)
van Leer, B.: Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)
Violeau, D., Issa, R.: Numerical modelling of complex turbulent free-surface flows with the SPH model: an overview. Int. J. Numer. Methods Fluids 83, 277–304 (2007)
Zhang, S., Kuwabara, S., Suzuki, T., Kawano, Y., Morita, K., Fukuda, K.: Simulation of solid-fluid mixture flow using moving particle methods. J. Comput. Phys. 228, 2552–2565 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Gotoh, H., Khayyer, A. (2025). Advanced Techniques of Conventional Particle Methods. In: Advanced Particle Methods. Springer, Singapore. https://doi.org/10.1007/978-981-97-7933-8_3
Download citation
DOI: https://doi.org/10.1007/978-981-97-7933-8_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-7932-1
Online ISBN: 978-981-97-7933-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)