Skip to main content

Advanced Techniques of Conventional Particle Methods

  • Chapter
  • First Online:
Advanced Particle Methods
  • 71 Accesses

Abstract

The pressure is updated for the particles on the surface layer of the wall which is in contact with the fluid, but the pressure is not calculated for the dummy particles, which are arranged behind the surface-layer particles and are not in contact with the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graphics 26(3), 48 (2007)

    Google Scholar 

  • Amicarelli, A., Albano, R., Mirauda, D., Agate, G., Sole, A., Guandalini, R.: A smoothed particle hydrodynamics model for 3D solid body transport in free surface flow. Comput. Fluids 116, 205–228 (2015)

    MathSciNet  MATH  Google Scholar 

  • Arai, J., Koshizuka, S., Murozono, K.: Large eddy simulation and a simple wall model for turbulent flow calculation by a particle method. Int. J. Numer. Meth. Fluids 71, 772–787 (2013)

    MathSciNet  MATH  Google Scholar 

  • Balsara, D.: Von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms. J. Comput. Phys. 121, 357–372 (1995)

    ADS  MATH  Google Scholar 

  • Barnes, J.E., Hut, P.: A hierarchical O(NlogN) forced-calculation algorithm. Nature 324, 446–449 (1986)

    ADS  MATH  Google Scholar 

  • Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10, 199–229 (1992)

    ADS  MATH  Google Scholar 

  • Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M.: Nonlinear water wave interaction with floating bodies in SPH. J. Fluids Struct. 42, 112–129 (2013)

    ADS  MATH  Google Scholar 

  • Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191(2), 448–475 (2003)

    ADS  MATH  Google Scholar 

  • Dalrymple, R., Rogers, B.: Numerical modeling of water waves with the SPH method. Coastal Eng. 53, 141–147 (2006)

    MATH  Google Scholar 

  • Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47, 271–306 (1959) (translated US Joint Publ. Res. Service, JPRS 7226, 1969)

    Google Scholar 

  • Gomez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Dominguez, J.M.: SPHysics—development of a free-surface fluid solver—Part 1: theory and formulations. Comput. Geosci. 48, 289–299 (2012)

    ADS  MATH  Google Scholar 

  • Gotoh, H., Shibahara, T., Sakai, T.: Sub-particle-scale turbulence model for the MPS method—Lagrangian flow model for hydraulic engineering. Comput. Fluid Dyn. J. 9(4), 339–347 (2001)

    MATH  Google Scholar 

  • Gotoh, H., Ikari, H., Memita, T., Sakai, T.: Lagrangian particle method for simulation of wave overtopping on a vertical seawall. Coast. Eng. J. 47, 157–181 (2005)

    MATH  Google Scholar 

  • Gotoh, H., Shao, S., Memita, T.: SPH-LES model for wave dissipation using a curtain wall. Annu. J. Hydraulic Eng. JSCE 47, 397–402 (2003)

    MATH  Google Scholar 

  • Gotoh, H., Ikari, H., Sakai, T., Oku, K.: 3D numerical simulation of tsunami flood with floating bodies. Annu. J. Coastal Eng. JSCE 53, 196–200 (2006) (in Japanese)

    Google Scholar 

  • Gotoh, H., Ikari, H., Sakai, T., Oku, K.: 3D simulation of blocking of bridge in mountain stream by drift woods. Annu. J. Hydraulic Eng. JSCE 51, 835–840 (2007) (in Japanese)

    Google Scholar 

  • Gotoh, H.: Suuchi Ryusha Suirigaku (Computational Mechanics of Sediment Transport). Morikita Publishing (2004) (in Japanese)

    Google Scholar 

  • Harten, A., Lax, P., van Leer, B.: On upstream differencing and Godunov type methods for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    MathSciNet  MATH  Google Scholar 

  • Hirakuchi, H., Kajima, R., Kawaguchi, T.: Application of a piston-type absorbing wave-maker to irregular wave experiment. Coast. Eng. Japan 33(1), 11–24 (1990)

    MATH  Google Scholar 

  • Hirsch, C.: Numerical computation of internal and external flows—Vol. 2: Computational methods for inviscid and viscous flows. Wiley, New York (1992)

    Google Scholar 

  • Inutsuka, S.: Reformulation of smoothed particle hydrodynamics with Riemann solver. J. Comput. Phys. 179, 238–267 (2002)

    ADS  MATH  Google Scholar 

  • Khayyer, A., Gotoh, H., Shao, S.D.: Enhanced predictions of wave impact pressure by improved incompressible SPH methods. Appl. Ocean Res. 31(2), 111–131 (2009)

    MATH  Google Scholar 

  • Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci. Eng. 123, 421–434 (1996)

    ADS  MATH  Google Scholar 

  • Koshizuka, S., Nobe, A., Oka, Y.: Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Mech. Fluids 26, 751–769 (1998)

    MATH  Google Scholar 

  • Koshizuka, S.: Ryushiho. Maruzen Publishing (2005) (in Japanese)

    Google Scholar 

  • Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., Stansby, P.: Comparisons of weakly-compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227(18), 8417–8436 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ma, Q.W., Zhou, J.T.: MLPG-R method for numerical simulation of 2D breaking waves. Comput. Modeling Eng. Sci. 43(3), 277–304 (2009)

    MathSciNet  MATH  Google Scholar 

  • Molteni, D., Bilello, C.: Riemann solver in SPH. Mem. S. A. It. Suppl. 1, 36 (2003)

    Google Scholar 

  • Monaghan, J.J.: Particle methods for hydrodynamics. Comput. Phys. Rep. 3(2), 71–124 (1985)

    ADS  MATH  Google Scholar 

  • Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82, 1–15 (1989)

    ADS  MATH  Google Scholar 

  • Monaghan, J.J.: SPH compressible turbulence. Mon. Notices R. Astronom. Soc. 335(3), 843–852 (2002)

    ADS  MATH  Google Scholar 

  • Ren, B., He, M., Dong, P., Wen, H.: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method. Appl. Ocean Res. 50, 1–12 (2015)

    MATH  Google Scholar 

  • Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shao, S.: Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling. Int. J. Numer. Methods Fluids 50(5), 597–621 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shibata, K., Murozono, K., Kondo, M., Sakai, M., Koshizuka, S.: Numerical modeling of gas-phase pressure, negative pressure and curl operator by the MPS method. In: Proceedings on 17th Conference Computer Engineering and Science, C:2–3 (2012) (in Japanese)

    Google Scholar 

  • Smagorinsky, J.: General circulation experiments with the primitive equation—I. the basic experiment. Monthly Weather Rev. 91, 99–164 (1963)

    ADS  MATH  Google Scholar 

  • Tanaka, M., Masunaga, T., Nakagawa, Y.: Multi-resolution MPS method. Trans. JSCES, Paper No. 20090001 (2009) (in Japanese)

    Google Scholar 

  • Tanaka, M., Masunaga, T.: Stabilization and smoothing of pressure in MPS method by quasi-compressibility. J. Comput. Phys. 229, 4279–4290 (2010)

    ADS  MATH  Google Scholar 

  • Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    ADS  MATH  Google Scholar 

  • Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin (1997)

    MATH  Google Scholar 

  • van Leer, B.: Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Google Scholar 

  • Violeau, D., Issa, R.: Numerical modelling of complex turbulent free-surface flows with the SPH model: an overview. Int. J. Numer. Methods Fluids 83, 277–304 (2007)

    MATH  Google Scholar 

  • Zhang, S., Kuwabara, S., Suzuki, T., Kawano, Y., Morita, K., Fukuda, K.: Simulation of solid-fluid mixture flow using moving particle methods. J. Comput. Phys. 228, 2552–2565 (2009)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Gotoh .

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gotoh, H., Khayyer, A. (2025). Advanced Techniques of Conventional Particle Methods. In: Advanced Particle Methods. Springer, Singapore. https://doi.org/10.1007/978-981-97-7933-8_3

Download citation

Publish with us

Policies and ethics