Skip to main content

Chirality Revealed by Raman Optical Activity: Principles, Applications, Recent Developments and Future Prospects

  • Chapter
  • First Online:
Raman Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 248))

  • 211 Accesses

Abstract

Chirality is a fundamental property of molecules, particularly important in biological systems. The ability to distinguish between enantiomers is crucial in many fields. Raman optical activity (ROA) is a powerful analytical technique that measures the small intensity difference in Raman scattering of right- and left-circularly polarized light by chiral molecules. Due to their sensitivity to stereochemistry, ROA spectra can provide an ample amount of information on both structure and conformational behavior of chiral molecules. Here we present the theoretical background to the subject and an overview of different forms of ROA measurement, including resonance ROA (RROA) and surface-enhanced ROA (SEROA). We also discuss the application of ROA spectroscopy to a variety of molecules, emphasizing the extent of structural information that can be gathered. Although ROA is still a specialized technique, recent advances have led to several new applications and developments. We show several results to illustrate how ROA is opening new opportunities in analytical chemistry. Finally, we discuss recent advances in ROA instrumentation and its advantages and limitations compared to other chiral spectroscopic techniques, such as electronic and vibrational circular dichroism. Hopefully, this chapter provides a comprehensive list of the fundamentals, applications, advancements, and future potential of ROA as a powerful analytical technique for exploring and studying chirality in molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ostovar pour, L.D. Barron, S.T. Mutter, E.W. Blanch, in Chiral Analysis, 2nd edn., ed. by P.L. Polavarapu (Elsevier, 2018), pp. 249–291

    Google Scholar 

  2. V. Parchaňský, J. Kapitán, P. Bouř, RSC Adv. 4, 57125–57136 (2014)

    Article  ADS  Google Scholar 

  3. L.D. Barron, Biomed. Spectrosc. Imaging 4, 223–253 (2015)

    Article  Google Scholar 

  4. L.A. Nafie, in Encyclopedia of Spectroscopy and Spectrometry, 3rd edn., eds. by J.C. Lindon, G.E. Tranter, D.W. Koppenaal (Academic Press, Oxford, 2017), pp. 891–899

    Google Scholar 

  5. W. Hug, in Encyclopedia of Spectroscopy and Spectrometry, 3rd edn., eds. by J.C. Lindon, G.E. Tranter, D.W. Koppenaal (Academic Press, Oxford, 2017), pp. 881–890

    Google Scholar 

  6. J. Hudecová, P. Bouř, in Vibrational Spectroscopy in Protein Research (Elsevier, 2020), pp. 219–248

    Google Scholar 

  7. M. Krupová, J. Kessler, P. Bouř, ChemPlusChem 85, 561–575 (2020)

    Article  Google Scholar 

  8. T. Wu, Phys. Chem. Chem. Phys. 24, 15672–15686 (2022)

    Article  Google Scholar 

  9. G.G. Hoffmann, in Encyclopedia of Spectroscopy and Spectrometry, 3rd edn., eds. by J.C. Lindon, G.E. Tranter, D.W. Koppenaal (Academic Press, Oxford, 2017), pp. 853–862

    Google Scholar 

  10. L. Barron, M. Bogaard, A. Buckingham, J. Am. Chem. Soc. 95, 603–605 (1973)

    Article  Google Scholar 

  11. L.D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2009)

    Google Scholar 

  12. L.D. Barron, A.D. Buckingham, Chem. Phys. Lett. 492, 199–213 (2010)

    Article  ADS  Google Scholar 

  13. L.A. Nafie, Chirality 32, 667–692 (2020)

    Article  Google Scholar 

  14. P.L. Polavarapu, Vibrational Spectra: principles and Applications with Emphasis on Optical Activity (Elsevier, 1998)

    Google Scholar 

  15. P.L. Polavarapu, Compr. Chiroptical Spectrosc. 2, 387–420 (2012)

    Article  Google Scholar 

  16. P.L. Polavarapu, Chiroptical Spectroscopy: fundamentals and Applications (CRC Press, 2016)

    Google Scholar 

  17. L.D. Barron, S.T. Mutter, E.W. Blanch, in Chiral Analysis (Elsevier, 2018), pp. 249–291

    Google Scholar 

  18. C.D. Syme, E.W. Blanch, C. Holt, R. Jakes, M. Goedert, L. Hecht, L.D. Barron, Eur. J. Biochem. 269, 148–156 (2002)

    Article  Google Scholar 

  19. F. Zhu, J. Kapitan, G.E. Tranter, P.D. Pudney, N.W. Isaacs, L. Hecht, L.D. Barron, Proteins: Struct. Funct. Bioinform. 70, 823–833 (2008)

    Article  Google Scholar 

  20. M. Quack, in Quantum Systems in Chemistry and Physics: progress in Methods and Applications (Springer, 2012), pp. 47–76

    Google Scholar 

  21. S. Mason, Trends Pharmacol. Sci. 7, 20–23 (1986)

    Article  Google Scholar 

  22. G.H. Wagnière, On Chirality and the Universal Asymmetry: reflections on Image and Mirror Image (Wiley, 2007)

    Google Scholar 

  23. R.S. Cahn, C. Ingold, V. Prelog, Angew. Chem., Int. Ed. Engl. 5, 385–415 (1966)

    Article  Google Scholar 

  24. W.A. Bonner, Orig. Life Evol. Biosph. 25, 175–190 (1995)

    Article  ADS  Google Scholar 

  25. J.P. Riehl, Mirror-Image Asymmetry: an Introduction to the Origin and Consequences of Chirality (Wiley, 2010)

    Google Scholar 

  26. R. Popa, J. Mol. Evol. 44, 121–127 (1997)

    Article  ADS  Google Scholar 

  27. W.A. Bonner, in AIP Conference Proceedings (American Institute of Physics, 1996), pp. 17–49

    Google Scholar 

  28. A. Salam, J. Mol. Evol. 33, 105–113 (1991)

    Article  ADS  Google Scholar 

  29. J.V. de Julián-Ortiz, C. de Gregorio Alapont, I. Rı́os-Santamarina, R. Garcı́a-Doménech, J. Gálvez, J. Mol. Graph. Modell. 16, 14–18 (1998)

    Google Scholar 

  30. B. Richard, C.N. Weiskopf, R.S. Gary, Anesthesiology 97, 497–502 (2002)

    Google Scholar 

  31. B. Kasprzyk-Hordern, Chem. Soc. Rev. 39, 4466–4503 (2010)

    Article  Google Scholar 

  32. A.J. Hutt, S.C. Tan, Drugs 52(Suppl 5), 1–12 (1996)

    Google Scholar 

  33. G.A. Hembury, V.V. Borovkov, Y. Inoue, Chem. Rev. 108, 1–73 (2008)

    Article  Google Scholar 

  34. L.D. Barron, Chirality 24, 879–893 (2012)

    Article  Google Scholar 

  35. C. Liang, K. Mislow, J. Am. Chem. Soc. 116, 3588–3592 (1994)

    Article  Google Scholar 

  36. S.D. Banik, N. Nandi, Biochirality: origins, Evolution and Molecular Recognition (2013), pp. 255–305

    Google Scholar 

  37. J.I. Kwiecińska, M. Cieplak, J. Phys.: Condens. Matter 17, S1565 (2005)

    ADS  Google Scholar 

  38. J. Chela-Flores, Chirality 6, 165–168 (1994)

    Article  Google Scholar 

  39. R. Corradini, S. Sforza, T. Tedeschi, R. Marchelli, Chirality: the pharmacological, biological, and chemical consequences of molecular asymmetry 19, 269–294 (2007)

    Google Scholar 

  40. D.B. Laurence, in Strategies of Life Detection, eds. by O. Botta et al. (Springer US, Boston, MA, 2008), pp. 187–201

    Google Scholar 

  41. A. Long, O. Perraud, M. Albalat, V. Robert, J.-P. Dutasta, A. Martinez, J. Org. Chem. 83, 6301–6306 (2018)

    Article  Google Scholar 

  42. H.-Y. Wang, S.A. Blaszczyk, G. Xiao, W. Tang, Chem. Soc. Rev. 47, 681–701 (2018)

    Article  Google Scholar 

  43. S. Gim, G. Fittolani, Y. Nishiyama, P. H. Seeberger, Angew. Chem. Int. Edit. 59, 22577–22583 (2020)

    Article  Google Scholar 

  44. M. O’Neill, S.M. Kelly, Adv. Mater. (Deerfield Beach, Fla.) 23, 566–584 (2011)

    Google Scholar 

  45. C. Duan, Z. Cheng, B. Wang, Small 17, 2007306 (2021)

    Google Scholar 

  46. S. Ma, J. Ahn, J. Moon, Adv. Mater. 33, 2005760 (2021)

    Article  Google Scholar 

  47. A. Tran, C.E. Boott, M.J. MacLachlan, Adv. Mater. 32, 1905876 (2020)

    Article  Google Scholar 

  48. M. Manoccio, M. Esposito, A. Passaseo, M. Cuscunà, V. Tasco, Micromachines 12, 6 (2020)

    Article  Google Scholar 

  49. P. Lv, X. Lu, L. Wang, W. Feng, Adv. Func. Mater. 31, 2104991 (2021)

    Article  Google Scholar 

  50. G.E. Fenoy, M. Rafti, W.A. Marmisollé, O. Azzaroni, Mater. Adv. 2, 7731–7740 (2021)

    Article  Google Scholar 

  51. Y. Du, D. Cao, B. Li, H. Lü, Y. Shen, Electrochim. Acta 395, 139201 (2021)

    Article  Google Scholar 

  52. S. Raza, X. Li, F. Soyekwo, D. Liao, Y. Xiang, C. Liu, Eur. Polym. J. 160, 110773 (2021)

    Article  Google Scholar 

  53. S. Nagahara, Y. Okada, Y. Kitano, K. Chiba, Chem. Sci. 12, 12911–12917 (2021)

    Article  Google Scholar 

  54. A.M. Garcia et al., Chem 4, 1862–1876 (2018)

    Article  Google Scholar 

  55. W.H. Brooks, W.C. Guida, K.G. Daniel, Curr. Top. Med. Chem. 11, 760–770 (2011)

    Article  Google Scholar 

  56. I.K. Reddy, R. Mehvar, Chirality in Drug Design and Development (CRC Press, 2004)

    Google Scholar 

  57. S.R. LaPlante, L.D. Fader, K.R. Fandrick, D.R. Fandrick, O. Hucke, R. Kemper, S.P. Miller, P.J. Edwards, J. Med. Chem. 54, 7005–7022 (2011)

    Article  Google Scholar 

  58. O. Mcconnell et al., Chirality: the pharmacological, biological, and chemical consequences of molecular asymmetry 19, 658–682 (2007)

    Google Scholar 

  59. S.R. LaPlante, P.J. Edwards, L.D. Fader, A. Jakalian, O. Hucke, ChemMedChem 6, 505–513 (2011)

    Article  Google Scholar 

  60. C. Brown, Chirality in Drug Design and Synthesis (Academic Press, 2013)

    Google Scholar 

  61. I. Agranat, H. Caner, Drug Discov. Today 4, 313–321 (1999)

    Article  Google Scholar 

  62. J.R. Brandt, F. Salerno, M.J. Fuchter, Nat. Rev. Chem. 1, 0045 (2017)

    Article  Google Scholar 

  63. E. Karjalainen, D.F. Izquierdo, V. Marti-Centelles, S.V. Luis, H. Tenhu, E. Garcia-Verdugo, Polym. Chem. 5, 1437–1446 (2014)

    Article  Google Scholar 

  64. C.S. Wilcox, L.M. Greer, V. Lynch, J. Am. Chem. Soc. 109, 1865–1867 (1987)

    Article  Google Scholar 

  65. M. Khorloo, X. Yu, Y. Cheng, H. Zhang, S. Yu, J.W. Lam, M. Zhu, B.Z. Tang, ACS Nano 15, 1397–1406 (2020)

    Article  Google Scholar 

  66. J.A. Schmidt, J.A. Weatherby, I.J. Sugden, A. Santana-Bonilla, F. Salerno, M.J. Fuchter, E.R. Johnson, J. Nelson, K.E. Jelfs, Cryst. Growth Des. 21, 5036–5049 (2021)

    Article  Google Scholar 

  67. R. Eelkema, B.L. Feringa, Org. Biomol. Chem. 4, 3729–3745 (2006)

    Article  Google Scholar 

  68. K.E. Shopsowitz, H. Qi, W.Y. Hamad, M.J. MacLachlan, Nature 468, 422–425 (2010)

    Article  ADS  Google Scholar 

  69. P. Atkins, L. Barron, Mol. Phys. 16, 453–466 (1969)

    Article  ADS  Google Scholar 

  70. L.D. Barron, F. Zhu, L. Hecht, G.E. Tranter, N.W. Isaacs, J. Mol. Struct. 834, 7–16 (2007)

    Article  ADS  Google Scholar 

  71. L. Barron, L. Hecht, E. Blanch, A. Bell, Prog. Biophys. Mol. Biol. 73, 1–49 (2000)

    Article  Google Scholar 

  72. T.A. Keiderling, Chem. Rev. 120, 3381–3419 (2020)

    Article  Google Scholar 

  73. L.D. Barron, L. Hecht, I.H. McColl, E.W. Blanch, Mol. Phys. 102, 731–744 (2004)

    Article  ADS  Google Scholar 

  74. J.R. Escribano, L.D. Barron, Mol. Phys. 65, 327–344 (1988)

    Article  ADS  Google Scholar 

  75. F. Zhu, N.W. Isaacs, L. Hecht, L.D. Barron, Structure 13, 1409–1419 (2005)

    Article  Google Scholar 

  76. A.A. Bunaciu, H.Y. Aboul-Enein, Ş. Fleschin, Appl. Spectrosc. Rev. 50, 176–191 (2015)

    Article  ADS  Google Scholar 

  77. J.B. Aitken et al., Radiat. Phys. Chem. 79, 176–184 (2010)

    Article  ADS  Google Scholar 

  78. P.L. Polavarapu, J. Phys. Chem. 94, 8106–8112 (1990)

    Article  Google Scholar 

  79. L. Barron, A. Buckingham, Annu. Rev. Phys. Chem. 26, 381–396 (1975)

    Article  ADS  Google Scholar 

  80. W. Hug, in Handbook of Vibrational Spectroscopy, eds. by J.M. Chalmers, P.R. Griffiths (Wiley, 2006), pp. 745–758

    Google Scholar 

  81. L.A. Nafie, Vibrational Optical Activity: principles and Applications (Wiley, 2011)

    Google Scholar 

  82. L.A. Nafie, Annu. Rev. Phys. Chem. 48, 357–386 (1997)

    Article  ADS  Google Scholar 

  83. A. Melcrová, J. Kessler, P. Bouř, J. Kaminský, Phys. Chem. Chem. Phys. 18, 2130–2142 (2016)

    Article  Google Scholar 

  84. C. Mensch, L.D. Barron, C. Johannessen, Phys. Chem. Chem. Phys. 18, 31757–31768 (2016)

    Article  Google Scholar 

  85. N.R. Yaffe, A. Almond, E.W. Blanch, J. Am. Chem. Soc. 132, 10654–10655 (2010)

    Article  Google Scholar 

  86. A. Bell, L. Hecht, L. Barron, J. Am. Chem. Soc. 120, 5820–5821 (1998)

    Article  Google Scholar 

  87. A.F. Bell, L. Hecht, L.D. Barron, J. Am. Chem. Soc. 119, 6006–6013 (1997)

    Article  Google Scholar 

  88. F. Zhu, N.W. Isaacs, L. Hecht, L.D. Barron, J. Am. Chem. Soc. 127, 6142–6143 (2005)

    Article  Google Scholar 

  89. C.V. Raman, Proc. Math. Sci. 37, 342–349 (1953)

    Article  Google Scholar 

  90. C.V. Raman, Indian J. Phys. 2, 387–398 (1928)

    Google Scholar 

  91. C. Raman, Trans. Faraday Soc. 25, 781–792 (1929)

    Article  Google Scholar 

  92. F.A. Miller, G.B. Kauffman, J. Chem. Educ. 66, 795 (1989)

    Article  Google Scholar 

  93. R. Singh, F. Riess, Curr. Sci. 75, 965–971 (1998)

    Google Scholar 

  94. L. Nasdala, D.C. Smith, R. Kaindl, M.A. Ziemann, A. Beran, E. Libowitzky, Spectrosc. Methods Mineralo. 6, 281–343 (2004)

    Article  Google Scholar 

  95. D.A. Long, Int. Rev. Phys. Chem. 7, 317–349 (1988)

    Article  Google Scholar 

  96. R. Singh, Phys. Perspect. 4, 399–420 (2002)

    Article  ADS  Google Scholar 

  97. G.S. Landsberg, L.I. Mandelstam, J. Russian Phys.-Chem. Soc. Phys. Sect. 60, 335 (1928)

    Google Scholar 

  98. P.L. Polavarapu, Chirality 14, 768–781 (2002)

    Article  Google Scholar 

  99. T.M. Lowry, Optical Rotatory Power (Dover publications, 1964)

    Google Scholar 

  100. H. Landolt, The Optical Rotating Power of Organic Substances and Its Practical Applications (Chemical Publishing Company, 1902)

    Google Scholar 

  101. J. Gal, Chirality: the pharmacological, biological, and chemical consequences of molecular asymmetry 20, 5–19 (2008)

    Google Scholar 

  102. J. Gal, Nat. Chem. 9, 604–605 (2017)

    Article  Google Scholar 

  103. H. Flack, Acta Crystallogr. A 65, 371–389 (2009)

    Article  ADS  Google Scholar 

  104. J. Gal, Chirality 23, 1–16 (2011)

    Article  Google Scholar 

  105. G.D. Fasman, Circular Dichroism and the Conformational Analysis of Biomolecules (Springer Science & Business Media, 2013)

    Google Scholar 

  106. B. Kahr, Chirality 30, 351–368 (2018)

    Article  Google Scholar 

  107. S. Mitchell, Nature 166, 434–435 (1950)

    Article  ADS  Google Scholar 

  108. D.M. Rogers, S.B. Jasim, N.T. Dyer, F. Auvray, M. Réfrégiers, J.D. Hirst, Chem 5, 2751–2774 (2019)

    Article  Google Scholar 

  109. L.D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, 2004)

    Google Scholar 

  110. N. Berova, P.L. Polavarapu, K. Nakanishi, R.W. Woody, Comprehensive Chiroptical Spectroscopy, Volume 2: applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules, vol. 2 (Wiley, 2012)

    Google Scholar 

  111. N. Berova, P.L. Polavarapu, K. Nakanishi, R.W. Woody, Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical Simulations, vol. 1 (Wiley, 2011)

    Google Scholar 

  112. W. Hug, S. Kint, G.F. Bailey, J.R. Scherer, J. Am. Chem. Soc. 97, 5589–5590 (1975)

    Article  Google Scholar 

  113. L. Hecht, L.D. Barron, W. Hug, Chem. Phys. Lett. 158, 341–344 (1989)

    Article  ADS  Google Scholar 

  114. L.D. Barron, A.D. Buckingham, Mol. Phys. 20, 1111–1119 (1971)

    Article  ADS  Google Scholar 

  115. H. Li, L.A. Nafie, J. Raman Spectrosc. 43, 89–94 (2012)

    Article  ADS  Google Scholar 

  116. L.D. Barron, A.D. Buckingham, J. Am. Chem. Soc. 96, 4769–4773 (1974)

    Article  Google Scholar 

  117. L. Hecht, L.A. Nafie, Mol. Phys. 72, 441–469 (1991)

    Article  ADS  Google Scholar 

  118. A. Baiardi, J. Bloino, V. Barone, J. Chem. Theory Comput. 14, 6370–6390 (2018)

    Article  Google Scholar 

  119. M.J. Frisch et al., Gaussian 16 Rev. A.03 (2016)

    Google Scholar 

  120. T. Helgaker, K. Ruud, K.L. Bak, P. Jørgensen, J. Olsen, Faraday Discuss. 99, 165–180 (1994)

    Article  ADS  Google Scholar 

  121. K. Ruud, T. Helgaker, P. Bouř, J. Phys. Chem. A 106, 7448–7455 (2002)

    Article  Google Scholar 

  122. P. Bouř, J. Sopková, L. Bednárová, P. Maloň, T.A. Keiderling, J. Comput. Chem. 18, 646–659 (1997)

    Article  Google Scholar 

  123. S. Yamamoto, X. Li, K. Ruud, P. Bour, J. Chem. Theory Comput. 8, 977–985 (2012)

    Article  Google Scholar 

  124. J. Kessler, J. Kapitán, P. Bouř, J. Phys. Chem. Lett. 6, 3314–3319 (2015)

    Article  Google Scholar 

  125. L.A. Nafie, Appl. Spectrosc. 50, 14A-26A (1996)

    Article  ADS  Google Scholar 

  126. M. Krupová, J. Kapitán, P. Bouř, ACS Omega 4, 1265–1271 (2019)

    Article  Google Scholar 

  127. E.W. Blanch, L. Hecht, L.D. Barron, in Chiral Analysis, eds. by K.W. Busch, M.A. Busch (Elsevier, Amsterdam, 2006), pp. 545–594

    Google Scholar 

  128. M. Das, D. Gangopadhyay, J. Hudecová, J. Kessler, J. Kapitán, P. Bouř, Chempluschem, e202300219 (2023)

    Google Scholar 

  129. Q. Yang, J. Kapitán, P. Bouř, J. Bloino, J. Phys. Chem. Lett. 13, 8888–8892 (2022)

    Article  Google Scholar 

  130. P. Michal, R. Čelechovský, M. Dudka, J. Kapitán, M. Vůjtek, M. Berešová, J. Šebestík, K. Thangavel, P. Bouř, J. Phys. Chem. B 123, 2147–2156 (2019)

    Article  Google Scholar 

  131. M. Hope, J. Šebestík, J. Kapitán, P. Bouř, J. Phys. Chem. A 124, 674–683 (2020)

    Article  Google Scholar 

  132. V. Palivec, P. Michal, J. Kapitán, H. Martinez-Seara, P. Bouř, ChemPhysChem 21, 1272–1279 (2020)

    Article  Google Scholar 

  133. A. Kurochka, J. Průša, J. Kessler, J. Kapitán, P. Bouř, Phys. Chem. Chem. Phys. 23, 16635–16645 (2021)

    Article  Google Scholar 

  134. L.A. Nafie, T.B. Freedman, Chem. Phys. Lett. 154, 260–266 (1989)

    Article  ADS  Google Scholar 

  135. D. Che, L. Hecht, L.A. Nafie, Chem. Phys. Lett. 180, 182–190 (1991)

    Article  ADS  Google Scholar 

  136. G.-S. Yu, D. Che, T.B. Freedman, L.A. Nafie, Tetrahedron: Asymmetry 4, 511–516 (1993)

    Google Scholar 

  137. G.-S. Yu, L.A. Nafie, Chem. Phys. Lett. 222, 403–410 (1994)

    Article  ADS  Google Scholar 

  138. G.S. Yu, D. Che, T.B. Freedman, L.A. Nafie, Biospectroscopy 1, 113–123 (1995)

    Google Scholar 

  139. G.S. Yu, T.B. Freedman, L.A. Nafie, J. Raman Spectrosc. 26, 733–743 (1995)

    Article  ADS  Google Scholar 

  140. M. Vargek, T.B. Freedman, L.A. Nafie, J. Raman Spectrosc. 28, 627–633 (1997)

    Article  ADS  Google Scholar 

  141. L.A. Nafie, B.E. Brinson, X. Cao, D.A. Rice, O.M. Rahim, R.K. Dukor, N.J. Halas, Appl. Spectrosc. 61, 1103–1106 (2007)

    Article  ADS  Google Scholar 

  142. M. Unno, T. Kikukawa, M. Kumauchi, N. Kamo, J. Phys. Chem. B 117, 1321–1325 (2013)

    Article  Google Scholar 

  143. W. Hug, Appl. Spectrosc. 57, 1–13 (2003)

    Article  ADS  Google Scholar 

  144. V. Profant, A. Jegorov, P. Bouř, V. Baumruk, J. Phys. Chem. B 121, 1544–1551 (2017)

    Article  Google Scholar 

  145. P. Michal, J. Hudecová, R. Čelechovský, M. Vůjtek, M. Dudka, J. Kapitán, Symmetry-Basel 14, 990 (2022)

    Article  ADS  Google Scholar 

  146. K. Dobšíková, P. Michal, D. Spalovská, M. Kuchař, N. Paškanová, R. Jurok, J. Kapitán, V. Setnička, Analyst 148, 1337–1348 (2023)

    Article  ADS  Google Scholar 

  147. P. Fagan, L. Kocourková, M. Tatarkovič, F. Kralík, M. Kuchar, V. Setnička, P. Bouř, ChemPhysChem 18, 2258–2265 (2017)

    Article  Google Scholar 

  148. J. Hudecová, J. Kapitán, M. Dračínský, P. Michal, V. Profant, P. Bouř, Chem.-Eur. J. 28, e202202045 (2022)

    Article  Google Scholar 

  149. V. Schrenková, M.S.P. Kkadan, J. Kessler, J. Kapitán, P. Bouř, Phys. Chem. Chem. Phys. 25, 8198–8208 (2023)

    Article  Google Scholar 

  150. V. Palivec, V. Kopecký, P. Jungwirth, P. Bouř, J. Kaminský, H. Martinez-Seara, Phys. Chem. Chem. Phys. 22, 1983–1993 (2020)

    Article  Google Scholar 

  151. V. Palivec, C. Johannessen, J. Kaminský, H. Martinez-Seara, PLOS Comput. Biol. 18, e1009678 (2022)

    Article  ADS  Google Scholar 

  152. V. Profant, C. Johannessen, E.W. Blanch, P. Bouř, V. Baumruk, Phys. Chem. Chem. Phys. 21, 7367–7377 (2019)

    Article  Google Scholar 

  153. V. Andrushchenko, A. Kurochka, J. Kubelka, J. Kaminský, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, 2022)

    Google Scholar 

  154. J. Jungwirth, J. Šebestík, M. Šafařík, J. Kapitán, P. Bouř, J. Phys. Chem. B 121, 8956–8964 (2017)

    Article  Google Scholar 

  155. J. Kessler, S. Yamamoto, P. Bouř, Phys. Chem. Chem. Phys. 19, 13614–13621 (2017)

    Article  Google Scholar 

  156. S. Yamamoto, S. Ishiro, J. Kessler, P. Bouř, Phys. Chem. Chem. Phys. 23, 26501–26509 (2021)

    Article  Google Scholar 

  157. P. Michal, J. Kapitán, J. Kessler, P. Bouř, Phys. Chem. Chem. Phys. 24, 19722–19733 (2022)

    Article  Google Scholar 

  158. M. Das, D. Gangopadhyay, J. Šebestík, L. Habartová, P. Michal, J. Kapitán, P. Bouř, Chem. Commun. 57, 6388–6391 (2021)

    Article  Google Scholar 

  159. G.J. Li, J. Kessler, J. Cheramy, T. Wu, M.R. Poopari, P. Bouř, Y.J. Xu, Angew. Chem. Int. Edit. 58, 16495–16498 (2019)

    Article  Google Scholar 

  160. T. Wu, G.J. Li, J. Kapitán, J. Kessler, Y.J. Xu, P. Bouř, Angew. Chem. Int. Ed. 59, 21895–21898 (2020)

    Article  Google Scholar 

  161. G.J. Li, M. Alshalalfeh, Y.Q. Yang, J.R. Cheeseman, P. Bouř, Y.J. Xu, Angew. Chem. Int. Ed. 60, 22004–22009 (2021)

    Article  Google Scholar 

  162. E. Machalska, G. Zajac, A.J. Wierzba, J. Kapitán, T. Andruniow, M. Spiegel, D. Gryko, P. Bouř, M. Baranska, Angew. Chem. Int. Ed. 60, 21205–21210 (2021)

    Article  Google Scholar 

  163. G. Zając, P. Bouř, J. Phys. Chem. B 126, 355–367 (2022)

    Article  Google Scholar 

  164. T. Wu, J. Kapitán, P. Bouř, J. Phys. Chem. Lett. 13, 3873–3877 (2022)

    Article  Google Scholar 

  165. E. Machalska, N. Hachlica, G. Zajac, D. Carraro, M. Baranska, G. Licini, P. Bouř, C. Zonta, A. Kaczor, Phys. Chem. Chem. Phys. 23, 23336–23340 (2021)

    Article  Google Scholar 

  166. T. Wu, J. Kapitán, V. Andrushchenko, P. Bouř, Anal. Chem. 89, 5043–5049 (2017)

    Article  Google Scholar 

  167. T. Wu, J. Kessler, J. Kaminský, P. Bouř, Chem.-Asian J. 13, 3865–3870 (2018)

    Article  Google Scholar 

  168. T. Wu, P. Bouř, Chem. Commun. 54, 1790–1792 (2018)

    Article  Google Scholar 

  169. E. Brichtová, J. Hudecová, N. Vršková, J. Šebestík, P. Bouř, T. Wu, Chem.-Eur. J. 24, 8664–8669 (2018)

    Article  Google Scholar 

  170. T. Wu, P. Bouř, V. Andrushchenko, Sci. Rep.-UK 9, 1068 (2019)

    Article  ADS  Google Scholar 

  171. J. Sahoo, T. Wu, B. Klepetářová, J. Valenta, P. Bouř, ChemPlusChem 85, 694–700 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Gangopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M., Kurochka, A., Bouř, P., Gangopadhyay, D. (2024). Chirality Revealed by Raman Optical Activity: Principles, Applications, Recent Developments and Future Prospects. In: Singh, D.K., Kumar Mishra, A., Materny, A. (eds) Raman Spectroscopy. Springer Series in Optical Sciences, vol 248. Springer, Singapore. https://doi.org/10.1007/978-981-97-1703-3_7

Download citation

Publish with us

Policies and ethics