Skip to main content

Introduction of Carbon Fluorides

  • Chapter
  • First Online:
Carbon Fluorides
  • 47 Accesses

Abstract

Carbon fluoride materials are one of the current research hotspots in the international high-tech, high-performance, and high-efficiency new carbon-based materials. They possess exceptional performance and unique properties due to the different types of C–F bonds, adjustable F/C ratios, various configuration and fluorine patterns, and which endow them with distinctive, tunable band gaps, optical properties, electrical conductivity, magnetic properties, tribological properties, mechanical performance, and thermal conductivity etc. These materials have attracted significant attention in the global scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruff O, Bretschneider O (1934) Die Reaktionsprodukte der verschiedenen Kohlenstoffformen mit Fluor II (Kohlenstoff-monofluorid). Z Anorg Allg Chem 217(1):1–18

    Article  CAS  Google Scholar 

  2. Balaish M, Ein-Eli Y (2018) Meso-pores carbon nano-tubes (CNTs) tissues-perfluorocarbons (PFCs) hybrid air-electrodes for Li-O2 battery. J Power Sources 379:219–227

    Article  CAS  Google Scholar 

  3. Lee Y (2007) Syntheses and properties of fluorinated carbon materials. J Fluor Chem 128(4):392–403

    Article  CAS  Google Scholar 

  4. Hsieh C, Chen W, Wu F (2008) Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness. Carbon 46(9):1218–1224

    Article  CAS  Google Scholar 

  5. Min C, He Z, Liu D, Zhang K, Dong C (2019) Urea modified fluorinated carbon nanotubes: unique self-dispersed characteristic in water and high tribological performance as water-based lubricant additives. New J Chem 43(37):14684–14693

    Article  CAS  Google Scholar 

  6. Yuan S, Rösner M, Schulz A, Wehling TO, Katasnelson M (2015) Electronic structures and optical properties of partially and fully fluorinated graphene. Phys Rev Lett 114(4):047403

    Article  PubMed  Google Scholar 

  7. Yang Z, Wang L, Sun W, Li S, Zhu T et al (2017) Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning. Appl Surf Sci 401:146–155

    Article  CAS  Google Scholar 

  8. Ye X, Ma L, Yang Z, Wang J, Wang H et al (2016) Covalent functionalization of fluorinated graphene and subsequent application as waterbased lubricant additive. ACS Appl Mater Inter 8(11):7483–7488

    Article  CAS  Google Scholar 

  9. Yan X, Zhao T, An L, Zhao G (2015) A crack-free and superhydrophobic cathode micro-porous layer for direct methanol fuel cells. Appl Energ 138:331–336

    Article  CAS  Google Scholar 

  10. Groult H, Tressaud A (2018) Use of inorganic fluorinated materials in lithium batteries and in energy conversion systems. Chem Commun 54(81):11375–11382

    Article  CAS  Google Scholar 

  11. Adamska M, Narkiewicz U (2017) Fluorination of carbon nanotubes - a review. J Fluor Chem 200:179–189

    Article  CAS  Google Scholar 

  12. Chen X, Fan K, Liu Y, Li Y, Liu X et al (2022) Recent advances in fluorinated graphene from synthesis to applications: critical review on functional chemistry and structure engineering. Adv Mater 34(1):2101665

    Article  CAS  Google Scholar 

  13. Han SS, Yu TH, Merinov BV, Duin ACT, Yazami R et al (2010) Unraveling structural models of graphite fluorides by density functional theory calculations. Chem Mater 22(6):2142–2154

    Article  CAS  Google Scholar 

  14. Lee S-S, Jang S-W, Park K, Jang EC, Kim J-Y et al (2013) A mechanistic study of graphene fluorination. J Phys Chem C 117(10):5407–5415

    Article  CAS  Google Scholar 

  15. Liu Y, Jiang L, Wang H, Wang H, Jiao W et al (2019) A brief review for fluorinated carbon: synthesis, properties and applications. Nanotechnol Rev 8(1):573–586

    Article  CAS  Google Scholar 

  16. Touhara H, Okino F (2000) Property control of carbon materials by fluorination. Carbon 38(2):241–267

    Article  CAS  Google Scholar 

  17. D. O’Hagan, Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37(2), 308–319 (2008).

    Google Scholar 

  18. Feng W, Long P, Feng Y, Li Y (2016) Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv Sci 3(7):1500413

    Article  Google Scholar 

  19. Giraudet J, Dubois M, Guérin K, Delabarre C, Pirotte P et al (2007) Heteronuclear dipolar recoupling using Hartmann-Hahn cross polarization: a probe for 19F–13C distance determination of fluorinated carbon materials. Solid State Nucl Magn Reson 31(3):131–140

    Article  CAS  PubMed  Google Scholar 

  20. Sato Y, Shiraishi S, Mazej Z, Hagiwara R, Ito Y (2003) Direct conversion mechanism of fluorine–GIC into poly (carbon monofluoride), (CF)n. Carbon 41(10):1971–19772003

    Article  CAS  Google Scholar 

  21. Sato Y, Kume T, Hagiwara R, Ito Y (2003) Reversible intercalation of HF in fluorine–GICs. Carbon 41(2):351–357

    Article  CAS  Google Scholar 

  22. Zhu Y, Zhang L, Zhao H, Fu Y (2017) Significantly improved electrochemical performance of CFx promoted by SiO2 modification for primary lithium batteries. J Mater Chem A 5(2):796–803

    Article  CAS  Google Scholar 

  23. Lee JH, Koon GKW, Shin DW, Fedorov VE, Choi J et al (2013) Property control of graphene by employing “semi-ionic” liquid fluorination. Adv Funct Mater 23(26):3329–3334

    Article  CAS  Google Scholar 

  24. Zhou S, Sherpa SD, Hess DW, Bongiorno A (2014) Chemical bonding of partially fluorinated graphene. J Phys Chem C 118(45):26402–26408

    Article  CAS  Google Scholar 

  25. Bettinger HF, Kudin KN, Scuseria GE (2004) Structural models of fluorine-graphite intercalation compounds from density functional theory. J Phys Chem A 108(15):3016–3018

    Article  CAS  Google Scholar 

  26. Cheng H, Sha X, Chen L, Cooper AC, Foo M et al (2009) An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds. J Am Chem Soc 131(49):17732–17733

    Article  CAS  PubMed  Google Scholar 

  27. Karlický F, Kumara Ramanatha Datta K, Otyepka M, Zbořil R (2013) Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7(8):6434–6464

    Google Scholar 

  28. Jiang J, Ji H, Chen P, Ouyang C, Niu X et al (2022) The influence of electrolyte concentration and solvent on operational voltage of Li/CFx primary batteries elucidated by Nernst Equation. J Power Sources 527:231193

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR, White HS (2022) Electrochemical methods: fundamentals and applications. John Wiley & Sons

    Google Scholar 

  30. Singh N, Das SS, Singh A (2009) Physical chemistry, new age international, vol II

    Google Scholar 

  31. Giraudet J, Delabarre C, Guerin K, Dubois M, Masin F et al (2006) Comparative performances for primary lithium batteries of some covalent and semi-covalent graphite fluorides. J Power Sources 158(2):1365–1372

    Article  CAS  Google Scholar 

  32. Delabarre C, Dubois M, Giraudet J, Guerin K, Hamwi A (2006) Electrochemical performance of low temperature fluorinated graphites used as cathode in primary lithium batteries. Carbon 44(12):2543–2548

    Article  CAS  Google Scholar 

  33. Dubois M, Guerin K, Zhang W, Ahmad Y, Hamwi A et al (2012) Tuning the discharge potential of fluorinated carbon used as electrode in primary lithium battery. Electrochim Acta 59:485–491

    Article  CAS  Google Scholar 

  34. Bruna M, Massessi B, Cassiago C, Battiato A, Vittone E et al (2011) Synthesis and properties of monolayer graphene oxyfluoride. J Mater Chem 21(46):18730–18737

    Article  CAS  Google Scholar 

  35. Wang Y, Lee WC, Manga KK, Ang PK, Lu J et al (2012) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24(31):4285

    Article  CAS  PubMed  Google Scholar 

  36. Sun C, Feng Y, Li Y, Qin C, Zhang Q et al (2014) Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 6(5):2634–2641

    Article  CAS  PubMed  Google Scholar 

  37. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Dai Y, Gao J, Huang J, Li B et al (2013) High-yield production of highly fluorinated graphene by direct heating fluorination of graphene-oxide. ACS Appl Mater Inter 5(17):8294–8299

    Article  CAS  Google Scholar 

  39. Ren M, Wang X, Dong C, Li B, Liu Y et al (2015) Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation. Phys Chem Chem Phys 17(37):24056–24062

    Article  CAS  PubMed  Google Scholar 

  40. Gong P, Wang Z, Li Z, Mi Y, Sun J (2013) Photochemical synthesis of fluorinated graphene via a simultaneous fluorination and reduction route. RSC Adv 3(18):6327–6330

    Article  CAS  Google Scholar 

  41. Grayfer ED, Makotchenko VG, Kibis LS, Boronin AI, Pazhetnov EM et al (2013) Synthesis, properties, and dispersion of few-layer graphene fluoride. Chem Asian J 8:2015–2022

    Article  CAS  PubMed  Google Scholar 

  42. Zhang M, Ma Y, Zhu Y, Che J, Xiao Y (2013) Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride. Carbon 63:149–156

    Article  CAS  Google Scholar 

  43. Gong P, Wang Z, Fan Z, Hong W, Yang Z, Gong P et al (2014)Synthesis of chemically controllable and electrically tunable graphene films by simultaneously fluorinating and reducing graphene oxide. Carbon 72:176–184

    Google Scholar 

  44. Walder BJ, Alam TM (2021) Modes of disorder in poly (carbon monofluoride). J Am Chem Soc 143(30):11714–11733

    Article  CAS  PubMed  Google Scholar 

  45. Peng C, Zhang S, Kong L, Xu H, Li Y et al (2024) Fluorinated carbon nanohorns as cathode materials for ultra-high power Li/CFx batteries. Small Methods 8(3):2301090

    Article  CAS  Google Scholar 

  46. Zhang H, Fan L, Dong H, Zhang P, Nie K et al (2016) Spectroscopic investigation of plasma-fluorinated monolayer graphene and application for gas sensing. ACS Appl Mater Inter 8(13):8652–8661

    Article  CAS  Google Scholar 

  47. Ahmad Y, Dubois M, Guérin K, Hamwi A, Fawal Z (2013) NMR and NEXAFS study of various graphite fluorides. J Phys Chem C 117(26):13564–13572

    Article  CAS  Google Scholar 

  48. Zhao F, Zhao G, Liu X, Ge C, Wang J (2014) Fluorinated graphene: facile solution preparation and tailorable properties by fluorine-content tuning. J Mater Chem A 2(23):8782–8789

    Article  CAS  Google Scholar 

  49. Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL et al (2010) Properties of fluorinated graphene films. Nano Lett 10(8):3001–3005

    Article  CAS  PubMed  Google Scholar 

  50. Gong P, Wang Z, Wang J, Wang H, Li Z (2012) One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage. J Mater Chem 22(33):16950–16956

    Article  CAS  Google Scholar 

  51. Wang X, Wang W, Liu Y, Ren M, Xiao H et al (2016) Characterisation of conformation and locations of C–F bonds in graphene derivatives by polarized ATR-FTIR. Anal Chem 88(7):3926–3934

    Article  CAS  PubMed  Google Scholar 

  52. Wang Z, Wang J, Li Z, Gong P, Liu X et al (2012) Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 50(12):5403–5410

    Article  CAS  Google Scholar 

  53. Zhou R, Li Y, Feng Y, Peng C, Feng W (2020) The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries. Composites Commun. 21:100396

    Article  Google Scholar 

  54. Nair RR, Ren W, Jalil R, Riaz I, Kravets VG (2010) Fluorographene: a two-dimensional counterpart of Teflon. Small 6(24):2877–2884

    Article  CAS  PubMed  Google Scholar 

  55. Samarakoon DK, Chen Z, Nicolas C, Nicolas C, Wang X (2011) Structural and electronic properties of fluorographene. Small 7(7):965–969

    Article  CAS  PubMed  Google Scholar 

  56. Samarakoon DK, Wang X-Q (2011) Twist-boat conformation in graphene oxides. Nanoscale 3(1):192–195

    Article  CAS  PubMed  Google Scholar 

  57. Samarakoon DK, Wang X-Q (2009) Chair and twist-boat membranes in hydrogenated graphene. ACS Nano 3(12):4017–4022

    Article  CAS  PubMed  Google Scholar 

  58. Bhattacharya A, Bhattacharya S, Majumder C, Das GP (2010) First principles prediction of the third conformer of hydrogenated BN sheet. Phys Status Solidi RRL 4(12):368–370

    Article  CAS  Google Scholar 

  59. Klintenberg M, Lebegue S, Katsnelson MI, Eriksson O (2010) Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements. Phys Rev B 81(8):085433

    Article  Google Scholar 

  60. Leenaerts O, Peelaers H, Hernandez-Nieves AD, Partoens B, Peeters FM (2010) First-principles investigation of graphene fluoride and graphene. Phys Rev B 82:195436

    Article  Google Scholar 

  61. Flores MZS, Autreto PAS, Legoas SB, Galvao DS (2009) Graphene to graphane: a theoretical study. Nanotechnology 20(46):465704

    Article  CAS  PubMed  Google Scholar 

  62. Paupitz R, Autreto PA, Legoas SB, Srinivasan SG, van Duin AC (2013) Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnology 24(3):035706

    Article  CAS  PubMed  Google Scholar 

  63. Muñoz E, Singh AK, Ribas MA, Penev ES, Yakobson BI (2010) The ultimate diamond slab: graphane versus graphene. Diam Relat Mater 19(5–6):368–373

    Article  Google Scholar 

  64. Okotrub AV, Chekhova GN, Pinakov DV, Yushina IV, Bulusheva LG (2022) Optical absorption and photoluminescence of partially fluorinated graphite crystallites. Carbon 193:98–106

    Article  CAS  Google Scholar 

  65. Vyalikh A, Bulusheva LG, Chekhova GN, Pinakov DV, Okotrub AV (2013) Fluorine patterning in room-temperature fluorinated graphite determined by solid-state NMR and DFT. J Phys Chem C 117(15):7940–7948

    Article  CAS  Google Scholar 

  66. Şahin H, Topsakal M, Ciraci S (2011) Structures of fluorinated graphene and their signatures. Phys Rev B 83(11):115432

    Article  Google Scholar 

  67. Giraudet J, Dubois M, Hamwi A, Stone W, Pirotte P (2005) Solid-state NMR (19F and 13C) study of graphite monofluoride (CF)n: 19F spin−lattice magnetic relaxation and 19F/13C distance determination by Hartmann−Hahn cross polarization. J Phys Chem B 109(1):175–181

    Article  CAS  PubMed  Google Scholar 

  68. Charlier J, Gonze X, Michenaud J (1993)First-principles study of graphite monofluoride (CF)n. Phys Rev B: Condens Matter Mater Phys 47(24):16162–16168

    Google Scholar 

  69. Pischedda V, Radescu S, Dubois M, Batisse N, Balima F et al (2017) Experimental and DFT high pressure study of fluorinated graphite (C2F)n. Carbon 114:690–699

    Article  CAS  Google Scholar 

  70. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191 (2007)

    Google Scholar 

  71. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313(5789):951–954

    Article  CAS  PubMed  Google Scholar 

  72. Liu HY, Hou ZF, Hu CH, Yang Y, Zhu ZZ (2012) Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine. J Phys Chem C 116(34):18193–18201

    Article  CAS  Google Scholar 

  73. Chang H, Cheng J, Liu X, Gao J, Li M et al (2011) Facile synthesis of wide-bandgap fluorinated graphene semiconductors. Chem Eur J 17(32):8896–8903

    Article  CAS  PubMed  Google Scholar 

  74. Santosh R, Kumar V (2021) The pressure effect on stability, electronic and optical properties of fluorine passivated graphene (CF)n: a first-principle study. Mater Sci Eng B 269:115163

    Article  CAS  Google Scholar 

  75. Chernozatonskii LA, Demin VA, Kvashnin DG (2020) Ultrawide-bandgap Moiré diamanes based on bigraphenes with the twist angles Θ ∼ 30°. Appl Phys Lett 117(25):253104

    Google Scholar 

  76. Jeon KJ, Lee Z, Pollak E, Moreschini L, Bostwick A et al (2011) Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 5(2):1042–1046

    Article  CAS  PubMed  Google Scholar 

  77. Padamata SK, Yasinskiy A, Stopic S, Friedrich B (2022) Fluorination of two-dimensional graphene: A review. J Fluor Chem 225:109964

    Article  Google Scholar 

  78. Wang K, Shao J, Paulus B (2021) Electronic and optical properties of fluorinated graphene within many-body Green’s function framework. J Chem Phys 154(10):104705

    Google Scholar 

  79. Zhang C, Shao J, Paulus B (2023) Making monolayer graphene photoluminescent by electron-beam-activated fluorination approach. Appl Surf Sci 154:154593

    Article  Google Scholar 

  80. Fan K, Chen X, Liu X, Liu Y, Lai W (2020) Toward high-efficiency photoluminescence emission by fluorination of graphene oxide: Investigations from excitation to emission evolution. Carbon 165:386–394

    Article  CAS  Google Scholar 

  81. Xu Y, Di M, Wang Y, Fu L, Du Y et al (2021) Structure, bandgap and photoluminescence of fluorinated reduced graphene oxide. Diam Relat Mater 114:108342

    Article  CAS  Google Scholar 

  82. Zbořil R, Karlický F, Bourlinos AB, Steriotis TA, Stubos AK et al (2010) Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6(24):2885–2891

    Article  PubMed  PubMed Central  Google Scholar 

  83. Stine R, Ciszek JW, Barlow DE, Lee W, Robinson JT et al (2012) High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene. Langmuir 28(21):7957–7961

    Article  CAS  PubMed  Google Scholar 

  84. Urbanová V, Holá K, Bourlinos AB, Čépe K, Ambrosi A et al (2015) Thiofluorographene–hydrophilic graphene derivative with semiconducting and genosensing properties. Adv Mater 27(14):2305–2310

    Article  PubMed  Google Scholar 

  85. Wang B, Wang J, Zhu J (2014) Fluorination of graphene: a spectroscopic and microscopic study. ACS Nano 8(2):1862–1870

    Article  CAS  PubMed  Google Scholar 

  86. Semushkina GI, Fedoseeva YV, Makarova AA, Smironv DA, Asanov IP et al (2022) Photolysis of fluorinated graphites with embedded acetonitrile using a white-beam synchrotron radiation. Nanomaterials 12(2):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chang H, Sun Z, Yuan Q, Ding F, Tao X et al (2010) Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Adv Mater 22(43):4872–4876

    Article  CAS  PubMed  Google Scholar 

  88. Nebogatikova NA, Antonova IV, Ivanov AI, Demin VA, Kvashnin DG et al (2020) Fluorinated graphene nanoparticles with 1–3 nm electrically active graphene quantum dots. Nanotechnology 31(29):295602

    Article  CAS  PubMed  Google Scholar 

  89. Cheng T, Liu Z, Liu Z (2020) High elastic moduli, controllable bandgap and extraordinary carrier mobility in single-layer diamond. J Mater. Chem. C 8(39):13819–13826

    Article  CAS  Google Scholar 

  90. Khatami MM, Gaddemane G, Van de Put ML, Moravvej-Farshi MK, Vandenberghe WG (2020) Electronic transport properties of hydrogenated and fluorinated graphene: a computational study. J. Phys-condens. Mat. 32(49):495502

    Article  CAS  Google Scholar 

  91. Wang Z, Wang J, Li Z, Gong P, Liu X et al (2012) Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 50(15):5403–5410

    Article  CAS  Google Scholar 

  92. Narayanan TN, Biroju RK, Renugopalakrishnan V (2017) Fluorographene: Synthesis and sensing applications. J Mater Res 32(15):2447–2448

    Article  Google Scholar 

  93. Nair RR, Sepioni M, Tsai I, Lehtinen O, Keinonen J et al (2012) Spin-half paramagnetism in graphene induced by point defects. Nat Photonics 8(3):199–202

    CAS  Google Scholar 

  94. Feng Q, Tang N, Liu F, Cao Q, Zheng W et al (2013) Obtaining high localized spin magnetic moments by fluorination of reduced graphene oxide. ACS Nano 7:6729–6734

    Article  CAS  PubMed  Google Scholar 

  95. Zheng Y, Wan X, Tang N, Feng Q, Liu F et al (2015) Magnetic properties of double-side partially fluorinated graphene from first principles calculations. Carbon 89:300–307

    Article  CAS  Google Scholar 

  96. Li Q, Liu X, Kim S, Shenoy VB, Sheehan PE et al (2014) Fluorination of graphene enhances friction due to increased corrugation. Nano Lett 14(9):5212–5217

    Article  CAS  PubMed  Google Scholar 

  97. Kwon S, Ko J, Jeon K, Kim Y, Park JY (2012) Enhanced nanoscale friction on fluorinated graphene. Nano Lett 12(12):6043–6048

    Article  CAS  PubMed  Google Scholar 

  98. Hou K, Gong P, Wang J, Yang Z, Wang Z et al (2014) Structural and tribological characterization of fluorinated graphene with various fluorine contents prepared by liquid-phase exfoliation. RSC Adv 4(100):56543–56551

    Article  CAS  Google Scholar 

  99. Huang W, Pei Q, Liu Z, Zhang Y (2012) Thermal conductivity of fluorinated graphene: a non-equilibrium molecular dynamics study. Chem Phys Lett 552:97–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng .

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, W. (2025). Introduction of Carbon Fluorides. In: Carbon Fluorides. Springer, Singapore. https://doi.org/10.1007/978-981-96-1407-3_1

Download citation

Publish with us

Policies and ethics