Abstract
In this chapter, transmission-line-based metamaterials are presented, and their application to the design of passive and active antennas is outlined. Transmission-line metamaterials, also termed negative-refractive-index transmission-line (NRI-TL) metamaterials, are formed by periodically loading a transmission line with lumped-element series capacitors and shunt inductors, and it is shown that they can support both forward and backward waves, as well as standing waves with a zero propagation constant. These rich propagation characteristics form the underlying basis for their use in many antenna applications, including leaky-wave antennas, compact resonant antennas, and multiband antennas. The resonant characteristics of the NRI-TL metamaterial structures reveal how these structures can be designed to offer multiband responses whose resonant frequencies are not harmonically related while offering large degrees of miniaturization. Design equations for rapid prototyping are presented, enabling the simple design of metamaterial antennas to a given specification using standard microwave substrates and loading elements in either fully printed form or surface-mount chip components. A number of passive metamaterial antenna applications are presented, including examples of zeroth-order resonant antennas, negative-order resonant antennas, epsilon-negative antennas, mu-negative antennas, metamaterial dipole antennas, and metamaterial-inspired antennas. Active non-Foster matching networks for small antennas are also presented using negative impedance converters (NICs) and negative impedance inverters (NIIs), and it is demonstrated how these can be applied to metamaterial-inspired antennas. Finally, a new method of implementing reactive non-Foster elements using loss-compensated negative-group-delay (NGD) networks is presented that exhibits improved stability, dispersion, and achievable bandwidth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albee TK (1976) Broadband VLF loop antenna system. US Patent 3,953,799
Albert KP (1973) Broadband antennas systems realized by active circuit conjugate impedance matching. Master’s thesis, Naval Postgraduate School, Monterey. Acc. No. AD769800
Alu A, Bilotti F, Engheta N, Vegni L (2007) Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans Antennas Propag 55(1):13–25
Antoniades MA (2004) Compact linear metamaterial phase shifters for broadband applications. Master’s thesis, University of Toronto, Toronto
Antoniades MA (2009) Microwave devices and antennas based on negative-refractive-index transmission-line metamaterials. Ph D thesis, University of Toronto, Toronto
Antoniades MA, Eleftheriades GV (2003) Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Antennas Wirel Propag Lett 2(1):103–106
Antoniades MA, Eleftheriades GV (2008a) A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials. IEEE Trans Antennas Propag 56(3):708–721
Antoniades MA, Eleftheriades GV (2008b) A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas Wirel Propag Lett 7:425–428
Antoniades MA, Eleftheriades GV (2009) A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Antennas Wirel Propag Lett 8:258–261
Antoniades MA, Eleftheriades GV (2011a) A multi-band NRI-TL metamaterial-loaded bow-tie antenna. In: Proceedings IEEE AP-S international symposium on antennas and propagation, Spokane, pp 1−4
Antoniades MA, Eleftheriades GV (2011b) A NRI-TL metamaterial-loaded bow-tie antenna. In: Proceedings fifth European conference on antennas and propagation, Rome, pp 1−4
Antoniades MA, Eleftheriades GV (2012) Multiband compact printed dipole antennas using NRI-TL metamaterial loading. IEEE Trans Antennas Propag 60(12):5613–5626
Antoniades MA, Abbosh A, Razali AR (2013) A compact multiband NRI-TL metamaterial-loaded planar antenna for heart failure monitoring. In: Proceedings IEEE AP-S international symposium on antennas and propagation, Orlando, pp 1372−1373
Baek S, Lim S (2009) Miniaturised zeroth-order antenna on spiral slotted ground plane. Electron Lett 45(20):1012–1014
Bahr A (1977) On the use of active coupling networks with electrically small receiving antennas. IEEE Trans Antennas Propag 25(6):841–845
Balanis CA (ed) (2008) Modern antenna handbook. Wiley, Hoboken
Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, New York
Bertin G, Bilotti F, Piovano B, Vallauri R, Vegni L (2012) Switched beam antenna employing metamaterial-inspired radiators. IEEE Trans Antennas Propag 60(8):3583–3593
Best SR (2005) The performance properties of electrically small resonant multiple-arm folded wire antennas. IEEE Antennas Propag Mag 47(4):13–27
Best SR (2014) The significance of composite right/left-handed (CRLH) transmission-line theory and reactive loading in the design of small antennas. IEEE Antennas Propag Mag 56(4):15–33
Bilotti F, Alu A, Vegni L (2008) Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Trans Antennas Propag 56(6):1640–1647
Bit-Babik G, Di Nallo C, Svigelj J, Faraone A (2007) Small wideband antenna with non-Foster loading elements. In: Proceedings International conference on electromagnetics in advanced applications (ICEAA), Torino, Italy, pp 105−107
Bode HW (1947) Network analysis and feedback amplifier design. D. Van Nostrand, New York
Brownlie J (1966) On the stability properties of a negative impedance converter. IEEE Trans Circuit Theory 13(1):98–99
Brucher A, Meunier PH, Jarry B, Guilion P, Sussman-Fort SE (1995) Negative resistance monolithic circuits for microwave planar active filter losses compensation. In: Proceedings 25th European microwave conference (EuMC), vol 2, Bologna, Italy, pp 910−915
Caloz C, Itoh T (2003) Novel microwave devices and structures based on the transmission line approach of meta-materials. In: Proceedings IEEE MTT-S international microwave symposium, vol 1, Philadelphia, pp 195−198
Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, Hoboken
Capolino F (ed) (2009) Metamaterials handbook: applications of metamaterials. CRC Press, Boca Raton
Chu LJ (1948) Physical limitations of omni-directional antennas. J Appl Phys 19(12):1163–1175
Coilcraft Inc (2015) 0402CS (1005) Ceramic chip inductors. http://www.coilcraft.com/0402cs.cfm. Document 198-1. Accessed 1 Feb 2015
Collin RE (1992) Foundations for microwave engineering, 2nd edn. McGraw-Hill, New York
Cui TJ, Smith DR, Liu R (eds) (2010) Metamaterials: theory, design, and applications. Springer, New York
Di Nallo C, Bit-Babik G, Faraone A (2007) Wideband antenna using non-Foster loading elements. In: Proceedings IEEE AP-S international symposium antennas on propagation, Honolulu, HI, USA, pp 4501–4504
Dong Y, Itoh T (2010) Miniaturized substrate integrated waveguide slot antennas based on negative order resonance. IEEE Trans Antennas Propag 58(12):3856–3864
Dong Y, Toyao H, Itoh T (2011) Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Trans Antennas Propag 59(11):4329–4333
Eleftheriades GV (2007) Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials. IEEE Antennas Propag Mag 49(2):34–51
Eleftheriades GV (2009) EM transmission-line metamaterials. Mater Today 12:30–41
Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, Hoboken
Eleftheriades GV, Iyer AK, Kremer PC (2002) Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans Microw Theory Tech 50(12):2702–2712
Eleftheriades GV, Grbic A, Antoniades MA (2004) Negative-refractive-index transmission-line metamaterials and enabling electromagnetic applications. In: Proceedings IEEE AP-S international symposium antennas on propagation, vol 2, Monterey, pp 1399−1402
Eleftheriades GV, Antoniades MA, Qureshi F (2007) Antenna applications of negative-refractive-index transmission-line structures. IET Microw Antennas Propag 1(1):12–22
Elek F, Eleftheriades GV (2005) A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction. New J Phys 7(163):1–18
Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, Hoboken
Fano RM (1950) Theoretical limitations on the broadband matching of arbitrary impedances. J Franklin Inst 249(1):57–83
Foster RM (1924) A reactance theorem. Bell Syst Tech J 3:259–267
Goubau G (1976) Multi-element monopole antennas. In: Proceedings ECOM-ARO workshop on electrically small antennas, Ft. Monmouth, pp 63−67
Grbic A, Eleftheriades GV (2002) A backward-wave antenna based on negative refractive index L-C networks. In: Proceedings IEEE AP-S international symposium antennas on propagation, vol 4, San Antonio, pp 340−343
Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 92(11):117403
Hakim SS (1965) Some new negative-impedance convertors. Electron Lett 1(1):9–10
Harrington RF (1960) Effect of antenna size on gain, bandwidth and efficiency. J Res Natl Bur Stand 64D(1):1–12
Harris AD, Myers GA (1968) An investigation of broadband miniature antennas. Technical report AD0677320, Naval Postgraduate School, Monterey
Hashemi MRM, Itoh T (2011) Evolution of composite right/left-handed leaky-wave antennas. Proc IEEE 99(10):1746–1754
He Y, Eleftheriades GV (2012) Metamaterial-inspired wideband circular monopole antenna. In: Proceedings IEEE AP-S international symposium antennas on propagation, Chicago, pp 1−2
Herraiz-Martinez FJ, Gonzalez-Posadas V, Garcia-Munoz LE, Segovia-Vargas D (2008a) Multifrequency and dual-mode patch antennas partially filled with left-handed structures. IEEE Trans Antennas Propag 56(8):2527–2539
Herraiz-Martinez FJ, Segovia-Vargas D, Garcia-Munoz LE, Gonzalez-Posadas V (2008b) Dual-frequency printed dipole loaded with meta-material particles. In: Proceedings IEEE AP-S international symposium antennas on propagation, San Diego, pp 1−4
Herraiz-Martinez FJ, Hall PS, Liu Q, Segovia-Vargas D (2011) Left-handed wire antennas over ground plane with wideband tuning. IEEE Trans Antennas Propag 59(5):1460–1471
Iizuka H, Hall PS (2007) Left-handed dipole antennas and their implementations. IEEE Trans Antennas Propag 55(55):1246–1253
Islam R, Eleftheriades GV (2007) Miniaturized microwave components and antennas using negative-refractive-index transmission-line (NRI-TL) metamaterials. Metamaterials (Elsevier) 1:53–61
Islam R, Eleftheriades GV (2012) A review of the microstrip/negative-refractive-index transmission-line coupled-line couplers. IET Microw Antennas Propag 6(1):31–45
Iyer AK, Eleftheriades GV (2004) Leaky-wave radiation from planar negative-refractive-index transmission-line metamaterials. In: Proceedings IEEE MTT-S international microwave symposium, vol 2, Forth Worth, pp 1411−1414
Iyer AK, Kremer PC, Eleftheriades GV (2003) Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. Opt Express 11(7):696–708
Jin P, Ziolkowski RW (2010) Linearly and circularly polarized, planar, electrically small, metamaterial-engineered dipole antennas. In: Proceedings IEEE AP-S international symposium antennas on propagation, Toronto, pp 1−4
Kim J, Kim G, Seong W, Choi J (2009) A tunable internal antenna with an epsilon negative zeroth order resonator for DVB-H service. IEEE Trans Antennas Propag 57(12):4014–4017
Kolev S, Delacressonniere B, Gautier J-L (2001) Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Trans Microw Theory Tech 49(12):2425–2430
Lai A, Itoh T, Caloz C (2004) Composite right/left-handed transmission line metamaterials. IEEE Microw Mag 5(3):34–50
Lai A, Leong KMKH, Itoh T (2007) Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Trans Antennas Propag 55(3):868–876
Larky AI (1956) Negative-impedance converter design. Ph D thesis, Stanford University
Larky AI (1957) Negative-impedance converters. IRE Trans Circuit Theory 4(3):124–131
Lee H-M (2011) A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure. IEEE Antennas Wirel Propag Lett 10:1377–1380
Lee J-G, Lee J-H (2007) Zeroth order resonance loop antenna. IEEE Trans Antennas Propag 55(3):994–997
Lee C-J, Leong KMKH, Itoh T (2006) Composite right/left-handed transmission line based compact resonant antennas for RF module integration. IEEE Trans Antennas Propag 54(8):2283–2291
Linvill JG (1953) Transistor negative-impedance converters. Proc IRE 41(6):725–729
Liu Q, Hall PS, Borja AL (2009) Efficiency of electrically small dipole antennas loaded with left-handed transmission lines. IEEE Trans Antennas Propag 57(10):3009–3017
Liu C-C, Chi P-L, Lin Y-D (2012) Compact zeroth-order resonant antenna based on dual-arm spiral configuration. IEEE Antennas Wirel Propag Lett 11:318–321
Liu W, Chen ZN, Qing X (2014) Metamaterial-based low-profile broadband mushroom antenna. IEEE Trans Antennas Propag 62(3):1165–1172
Marques R, Martin F, Sorolla M (2007) Metamaterials with negative parameters: theory, design and microwave applications. Wiley, Hoboken
Mehdipour A, Eleftheriades GV (2014) Leaky-wave antennas using negative-refractive-index transmission-line metamaterial supercells. IEEE Trans Antennas Propag 62(8):3929–3942
Middlebrook RD (1975) Measurement of loop gain in feedback systems. Int J Electron 38(4):485–512
Mirzaei H, Eleftheriades GV (2011a) A wideband metamaterial-inspired compact antenna using embedded non-Foster matching. In: Proceedings IEEE AP-S international symposium antennas on propagation, Spokane, WA, USA, pp 1950–1953
Mirzaei H, Eleftheriades GV (2011b) A compact frequency-reconfigurable metamaterial-inspired antenna. IEEE Antennas Wirel Propag Lett 10:1154–1157
Mirzaei H, Eleftheriades GV (2013a) Unilateral non-Foster elements using loss-compensated negative-group-delay networks for guided-wave applications. In: Proceedings IEEE MTT-S international microwave symposium, Seattle, WA, USA, pp 1–4
Mirzaei H, Eleftheriades GV (2013b) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Antennas Propag 61(11):5363–5371
Mirzaei H, Eleftheriades GV (2013c) Realizing non-Foster reactive elements using negative-group-delay networks. IEEE Trans Microw Theory Tech 61(12):4322–4332
Mirzaei H, Eleftheriades GV (2014) Realizing non-Foster reactances using negative-group-delay networks and applications to antennas. In: Proceedings IEEE radio wireless symposium (RWS), Newport Beach, CA, USA, pp 58−60
Myers BR (1965) New subclass of negative-impedance convertors with improved gain-product sensitivities. Electron Lett 1(3):68–70
Nagata M (1965) A simple negative impedance circuit with no internal bias supplies and good linearity. IEEE Trans Circuit Theory 12(3):433–434
Niu B-J, Feng Q-Y (2013) Bandwidth enhancement of CPW-fed antenna based on epsilon negative zeroth- and first-order resonators. IEEE Antennas Wirel Propag Lett 12:1125–1128
Niu B-J, Feng Q-Y, Shu P-L (2013) Epsilon negative zeroth- and first-order resonant antennas with extended bandwidth and high efficiency. IEEE Trans Antennas Propag 61(12):5878–5884
Park B-C, Lee J-H (2011) Omnidirectional circularly polarized antenna utilizing zeroth-order resonance of epsilon negative transmission line. IEEE Trans Antennas Propag 59(7):2717–2721
Park J-H, Ryu Y-H, Lee J-G, Lee J-H (2007) Epsilon negative zeroth-order resonator antenna. IEEE Trans Antennas Propag 55(12):3710–3712
Park JH, Ryu Y-H, Lee J-H (2010) Mu-zero resonance antenna. IEEE Trans Antennas Propag 58(6):1865–1875
Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969
Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782
Platzker A, Struble W (1994) Rigorous determination of the stability of linear n-node circuits from network determinants and the appropriate role of the stability factor K of their reduced two-ports. In: Proceedings 3rd international workshop on integrated nonlinear microwave and millimeterwave circuits, Duisburg, Germany, pp 93−107
Qureshi F, Antoniades MA, Eleftheriades GV (2005) A compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Antennas Wirel Propag Lett 4:333–336
Ryan CGM, Eleftheriades GV (2012) Two compact, wideband, and decoupled meander-line antennas based on metamaterial concepts. IEEE Antennas Wirel Propag Lett 11:1277–1280
Sanada A, Caloz C, Itoh T (2004) Planar distributed structures with negative refractive index. IEEE Trans Microw Theory Tech 52(4):1252–1263
Sandberg IW (1960) Synthesis of driving-point impedances with active RC networks. Bell Syst Tech J 39(4):947–962
Schelkunoff SA, Friis HT (1952) Antennas: theory and practice. Wiley, New York, p 309
Schussler M, Freese J, Jakoby R (2004a) Design of compact planar antennas using LH-transmission lines. In: Proceedings IEEE MTT-S international microwave symposium, vol 1, Forth Worth, pp 209−212
Schussler M, Oertel M, Fritsche C, Freese J, Jakoby R (2004b) Design of periodically L-C loaded patch antennas. In: Proceedings 27th ESA antenna technology workshop on innovative periodic antennas, Santiago de Compostela
Sievenpiper D, Lijun Z, Broas RFJ, Alexopoulos NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Tech 47(11):2059–2074
Skahill G, Rudish RM, Piero JA (1998) Electrically small, efficient, wideband, low-noise antenna elements. In: Proceedings antenna application symposium, Monticello, IL, USA, pp 214−231
Stearns SD (2011) Non-Foster circuits and stability theory. In: Proceedings IEEE AP-S international symposium antennas on propagation, Spokane, WA, USA, pp 1942–1945
Stearns SD (2012) Incorrect stability criteria for non-Foster circuits. In: Proceedings IEEE AP-S international symposium antennas on propagation, Chicago, IL, USA, pp 1–4
Stearns SD (2013) Circuit stability theory for non-Foster circuits. In: Proceedings IEEE MTT-S international microwave symposium, Seattle, WA, USA, pp 1–4
Struble W, Platzker A (1993) A rigorous yet simple method for determining stability of linear N-port networks [and MMIC application]. In: Proceedings GaAs IC symposium digest, San Jose, CA, USA, pp 251−254
Sussman-Fort SE (1998) Gyrator-based biquad filters and negative impedance converters for microwaves. Int J RF Microw Comput Aided Eng 8(2):86–101
Sussman-Fort SE, Rudish RM (2009) Non-Foster impedance matching of electrically-small antennas. IEEE Trans Antennas Propag 57(8):2230–2241
Tian M, Visvanathan V, Hantgan J, Kundert K (2001) Striving for small-signal stability. IEEE Circuits Devices Mag 17(1):31–41
Tretyakov SA, Ermutlu M (2005) Modeling of patch antennas partially loaded with dispersive backward-wave materials. IEEE Antennas Wirel Propag Lett 4:266–269
Vaughan R, Bach-Andersen J (2003) Channels, propagation and antennas for mobile communications. IEE, London
Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ∈ and μ. Soviet Phys Uspekhi 10(4):509–514
Volakis JL (2007) Antenna engineering handbook, 4th edn. McGraw-Hill Professional, New York
Volakis JL, Chen C-C, Fujimoto K (2010) Small antennas: miniaturization techniques & applications. McGraw-Hill Professional, New York
Wang C, Hu B-J, Zhang X-Y (2010) Compact triband patch antenna with large scale of frequency ratio using CRLH-TL structures. IEEE Antennas Wirel Propag Lett 9:744–747
Wei K, Zhang Z, Feng Z (2012a) Design of a wideband horizontally polarized omnidirectional printed loop antenna. IEEE Antennas Wirel Propag Lett 11:49–52
Wei K, Zhang Z, Feng Z, Iskander MF (2012b) A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns. IEEE Trans Antennas Propag 60(6):2702–2710
Wheeler HA (1947) Fundamental limitations of small antennas. Proc IRE 35(12):1479–1484
White CR, Colburn JS, Nagele RG (2012) A non-Foster VHF monopole antenna. IEEE Antennas Wirel Propag Lett 11:584–587
Xu ZA, White CR, Yung MW, Yoon YJ, Hitko DA, Colburn JS (2012) Non-Foster circuit adaptation for stable broadband operation. IEEE Microw Wirel Compon Lett 22(11):571–573
Yanagisawa T (1957) RC active networks using current inversion type negative impedance converters. IRE Trans Circuit Theory 4(3):140–144
Zedler M, Eleftheriades GV (2011) Anisotropic transmission-line metamaterials for 2-D transformation optics applications. Proc IEEE 99(10):1634–1645
Zhu J, Eleftheriades GV (2009a) Dual-band metamaterial-inspired small monopole antenna for WiFi applications. Electron Lett 45(22):1104–1106
Zhu J, Eleftheriades GV (2009b) A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Antennas Wireless Propag Lett 8:295–298
Zhu J, Eleftheriades GV (2010) A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas. IEEE Antennas Wireless Propag Lett 9:379–382
Zhu N, Ziolkowski RW (2012a) Broad-bandwidth, electrically small antenna augmented with an internal non-Foster element. IEEE Antennas Wireless Propag Lett 11:1116–1120
Zhu N, Ziolkowski RW (2012b) Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna. Appl Phys Lett 101(2):024107
Zhu J, Antoniades MA, Eleftheriades GV (2010) A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans Antennas Propag 58(4):1031–1038
Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Antennas Propag 54(7):2113–2130
Ziolkowski RW, Tang M-C, Zhu N (2013) An efficient, broad bandwidth, high directivity, electrically small antenna. Microw Opt Tech Lett 55(6):1430–1434
Zobel OJ (1923) Theory and design of uniform and composite electric wave-filters. Bell Syst Tech J 2(1):1–46
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media Singapore
About this entry
Cite this entry
Antoniades, M.A., Mirzaei, H., Eleftheriades, G.V. (2016). Transmission-Line Based Metamaterials in Antenna Engineering. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_21
Download citation
DOI: https://doi.org/10.1007/978-981-4560-44-3_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-4560-43-6
Online ISBN: 978-981-4560-44-3
eBook Packages: EngineeringReference Module Computer Science and Engineering