Skip to main content

Advancements in Silicon Photonics

  • Chapter
  • First Online:
Optical Signal Processing by Silicon Photonics

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 1475 Accesses

Abstract

This chapter focuses on the gradual and time-needed advancements made in the field of photonics. It also highlights the evolution taken place in the devices which are being used and prepared for future trends as well. The traditional and nontraditional motivations regarding selection of silicon as the enabling material for the usefulness of photonics and SOI waveguides and their types are also presented with great emphasis and depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SOI:

Silicon on insulator

CMOS:

Complementary metal–oxide–semiconductor

PhCs:

Photonic crystal

PIC:

Photonic integrated circuit

NLO:

Nonlinear optics

ULSI:

Ultra-large-scale integrated

IC:

Integrated circuit

MEMS:

Micro-electro-mechanical structures

MOEMS:

Micro-opto-electro-mechanical structures

References

  1. Lipson M (2005) Guiding, modulating, and emitting light on silicon—challenges and opportunities. Lightwave Technol 23:4222–4238

    Article  CAS  Google Scholar 

  2. Joannopoulos JD, Meade RD, Winn JN, Johnson SG (2008) Photonic crystals: molding the flow of light: one dimensional photonic crystals, 2nd edn. pp 44–104

    Google Scholar 

  3. Reed GT, Mashanovich GZ, Headley WR et al (2006) Issues associated with polarization independence in silicon photonics. Quantum Electron 12:1335–1344

    CAS  Google Scholar 

  4. Almeida VR, Xu Q, Barrios CA, Lipson M (2004) Guiding and confining light in void nanostructure. Opt Letts 29:1209–1211

    Article  Google Scholar 

  5. Xie M, Yuan Z, Qian B, Pavesi L (2009) Silicon nanocrystals to enable silicon photonics. Opt Letts 7:319–324

    CAS  Google Scholar 

  6. Tsuchizawa T, Yamada K, Fukuda H et al (2005) Microphotonic devices based on silicon microfabrication technology. Quantum Electron 11:232–240

    CAS  Google Scholar 

  7. McNab S, Moll N, Vlasov Y (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Express 11:2927–2939

    Article  Google Scholar 

  8. Roelkens G, Dumon P, Bogaerts W, Thourhout DV, Baets R (2005) Efficient fiber to SOI photonic wire coupler fabricated using standard CMOS technology. In: LEOS 18th Annual Meeting, Sydney, Australia, Oct 2005

    Google Scholar 

  9. Taillaert D, Bogaerts W, Bienstman P et al (2002) An out of plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. Quantum Electron 38:949–955

    Article  CAS  Google Scholar 

  10. Narasimha A (2004) Low dispersion, high spectral efficiency, RF photonic transmission systems and low loss grating couplers for silicon-on-insulator nanophotonic integrated circuits. PhD dissertation, University of California Los Angeles, 2004

    Google Scholar 

  11. Chen X, li C, Tsang HK (2009) US20090290837

    Google Scholar 

  12. Scheerlinck, Thourhout V, Beats R (2009) WO2009003969

    Google Scholar 

  13. Lu Z, Prather DW (2008) US007428358

    Google Scholar 

  14. Liu A (2010) US7643710

    Google Scholar 

  15. Tomasi W (2001) Advanced Electronic communication system, 5th edn, Prentice Hall

    Google Scholar 

  16. Inoue K (1992) Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. J Lightwave Technol 10:1553–1561

    Article  Google Scholar 

  17. Slusher RE, Hollberg LW, Yurke B, Mertz JC, Valley JF (1985) Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett 55:2409–2412

    Article  CAS  Google Scholar 

  18. Ranka JK, Windeler RS, Stentz AJ (2000) Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett 25:25–27

    Article  CAS  Google Scholar 

  19. Dudley JM, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1184

    Article  CAS  Google Scholar 

  20. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673

    Article  CAS  Google Scholar 

  21. Gisela Eckhardt RW, Hellwarth FJ, McClung SE, Schwarz DW, Woodbury EJ (1962) Stimulated Raman scattering from organic liquids. Phys Rev Lett 9:455–457

    Article  Google Scholar 

  22. Agrawal GP (2001) Nonlinear fiber optics. Academic Press, London

    Google Scholar 

  23. Boyd RW, Gauthier DJ (2002) Slow and fast light. Prog Opt 43:497–530

    Article  Google Scholar 

  24. Lockwood D, Pavesi L (2004) Silicon photonics II: topics in applied physics, vol 119. Springer, Berlin

    Google Scholar 

  25. LipsonML (2005) J Lightwave Technol. Guiding, Modulating and Emitting Light on Silicon- Challenges and Opportunities 23:4222–4238

    Google Scholar 

  26. Soref RA, Lorenzo JP (1985) Single-crystal silicon-A new material for 1.3 and 1.6 μm integrated-optical components. Electron Lett 21:953–954

    Article  CAS  Google Scholar 

  27. Soref RA, Lorenzo JP (1986) All-silicon active and passive guided-wave components for λ = 1:3 and 1:6 μm. IEEE J Quant Electron 22:873–879

    Article  Google Scholar 

  28. Pavesi L, Lockwood D (2004) Silicon photonics: topics in applied physics, vol 94. Springer, Berlin

    Google Scholar 

  29. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  CAS  Google Scholar 

  30. Soref RA (1993) Silicon-based optoelectronic. Proc IEEE 81:1687–1706

    Article  CAS  Google Scholar 

  31. Bisi O, Campisano SU, Pavesi L, Priolo F (1999) Silicon based microphotonics: from basics to applications. In: Proceedings of E. Fermi Schools: course CXLI, Amsterdam, The Netherlands

    Google Scholar 

  32. Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in Si nanocrystals. Nature 408:440–444

    Article  CAS  Google Scholar 

  33. Nayfeh MH, Barry N, Therrien J, Akcakir O, Gratton E, Belomoin G (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl Phys Lett 78:1131–1133

    Article  CAS  Google Scholar 

  34. Boyraz O, Jalali B (2004) Demonstration of a silicon Raman laser. Opt Express 12:5269–5273

    Article  CAS  Google Scholar 

  35. Chen M, Yen J, Li J, Chang J, Tsai S, Tsai C (2004) Stimulated emission in a nanostructured silicon pn junction diode using current injection. Appl Phys Lett 84:2163–2165

    Article  CAS  Google Scholar 

  36. Lee KK, Lim DR, Luan H-C, Agarwal A, Foresi J, Kimerling LC (2000) Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model. Appl Phys Lett 77:1617–1619

    Article  CAS  Google Scholar 

  37. Loncar M, Doll T, Vuckovic J, Scherer A (2000) Design and fabrication of silicon photonic crystal optical waveguides. J Lightwave Technol 18:1402–1411

    Article  CAS  Google Scholar 

  38. Han H-S, Seo S-Y, Shin JH (2001) Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide. J Appl Phys 27:4568–4570

    Google Scholar 

  39. Vlasov YA, O’Boyle M, Hamann HF, McNab SJ (2005) Active control of slow light on a chip with photonic crystal waveguides. Nature 438:65–69

    Article  CAS  Google Scholar 

  40. Png CE, Reed GT, Atta RMH, Ensell GJ, Evans AGR (2003) Development of small silicon modulators in silicon-on-insulator (SOI). Proc SPIE 4997:190–197

    Article  Google Scholar 

  41. Kuo Y-H, Lee Y-K, Ge Y, Ren S, Roth JE, Kamins TI, Miller DAB, Harris JS (2005) Strong quantum-confined stark effect in germanium quantum-well structures on silicon. Nature 437:1334–1336

    Article  CAS  Google Scholar 

  42. Akahane Y, Asano T, Song BS, Noda S (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425:944–947

    Article  CAS  Google Scholar 

  43. Xu Q, Schmidt B, Pradhan S, Lipson M (2005) Micrometre-scale silicon electro-optic modulator. Nature 435:325–327

    Article  CAS  Google Scholar 

  44. Song BS, Noda S, Asano T, Akahane Y (2005) Ultra-high-Q photonic double-heterostructure nanocavity. Nat Mater 4:207–210

    Article  CAS  Google Scholar 

  45. Michel J, Liu JF, Giziewicz W, Pan D, Wada K, Cannon DD, Jongthammanurak S, Danielson DT, Kimerling LC, Chen J, Ilday FO, Kartner FX, Yasaitis J (2005) High performance Ge p-i-n photodetectors on Si. In: Proceedings of group IV photon conference, pp 177–179

    Google Scholar 

  46. Jalali B (2006) Silicon photonics. J Lightwave Technol 24(12):4600–4615

    Article  CAS  Google Scholar 

  47. Soref RA (2006) The past, present, and future of silicon photonics. IEEE J Sel Topics Quantum Electron 12:1678

    Article  CAS  Google Scholar 

  48. Castagna ME, Coffa S, Monaco M, Muscara A, Caristia L, Lorenti S, Messina A (2003) High efficiency light emitting devices in silicon. Mater Sci Eng B 83:105

    Google Scholar 

  49. McNab S, Moll N, Vlasov Y (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Express 11:2927–2939

    Article  Google Scholar 

  50. Koester SJ, Schaub JD, Dehlinger G, Chu JO, Ouyang QC, Grill A (2004) High-efficiency, Ge-on-SOI lateral PIN photodiodes with 29 GHz bandwidth. In: Proceedings of device research conference

    Google Scholar 

  51. Liu A, Jones R, Liao L, Samara Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M (2004) A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427:615–618

    Article  CAS  Google Scholar 

  52. Raghunathan V, Claps R, Dimitropoulos D, Jalali B (2004) Wavelength conversion in silicon using Raman induced four-wave mixing. Appl Phys Lett 85:34–36

    Article  CAS  Google Scholar 

  53. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All optical control of light on a silicon chip. Nature 431:1081–1084

    Article  CAS  Google Scholar 

  54. Boyraz O, Koonath P, Raghunathan V, Jalali B (2004) All optical switching and continuum generation in silicon waveguides. Opt Express 12:4094–4102

    Article  CAS  Google Scholar 

  55. Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolasecu R, Fang A, Paniccia M (2005) An all-silicon Raman laser. Nature 435:292–294

    Article  Google Scholar 

  56. Liao L, Samara-Rubio D, Morse M, Liu A, Hodge D, Rubin D, Keil UD, Franck T (2005) High speed silicon Mach-Zehnder. Opt Express 13:3129–3135

    Article  CAS  Google Scholar 

  57. Gunn C (2006) CMOS photonics for high-speed interconnects. IEEE Micro 26:58–66

    Article  Google Scholar 

  58. Fang AW, Park H, Cohen O, Jones R, Paniccia M, Bowers J (2006) Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express 14:9203–9210

    Article  CAS  Google Scholar 

  59. Foster MA, Turner AC, Sharping JE, Schmidt BS, Lipson M, Gaeta AL (2006) Broadband optical parametric gain on a silicon photonic chip. Nature 441:960–963

    Article  CAS  Google Scholar 

  60. Fage-Pedersen J, Frandsen LA, Lavrinenko A, Borel PI (2006) A linear electrooptic effect in silicon, induced by use of strain. In Part of: 2006 EEE/LEOS international conference on proceedings of 3rd group IV photon, pp 37–39

    Google Scholar 

  61. Yin T, Cohen R, Morse M, Sarid G, Chetrit Y, Rubin D, Paniccia MJ (2007) 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt Express 15:13 965–13 971

    Google Scholar 

  62. Liu A, Liao L, Rubin D, Basak J, Nguyen H, Chetrit Y, Cohen R, Izhaky N, Paniccia M (2007) Silicon optical modulator for high-speed applications. In: Proceedings of 4th IEEE international conference group IV photon, pp 1–3

    Google Scholar 

  63. Masini G, Capellini G, Witzens J, Gunn C (2007) A four-channel, 10 Gbps monolithic optical receiver in 130 nm CMOS with integrated Ge waveguide photodetectors presented at the National fiber optic engineers conference, 2007, Paper PDP31, unpublished

    Google Scholar 

  64. Xia F, Sekaric L, Vlasov Y (2007) Ultracompact optical buffers on a silicon chip. Nat Photon 1:65–71

    Article  CAS  Google Scholar 

  65. Vlasov Y, Green WMJ, Xia F (2008) High-throughput silicon nanophotonic deflection switch for on-chip optical networks. Nat Photon 2:242–246

    Article  CAS  Google Scholar 

  66. Kimberling LC Devices for silicon microphotonic interconnection

    Google Scholar 

  67. Jalali B (2006) Silicon photonics. J Lightwave Technol 24(12):4600–4615

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameel Ahmed .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Ahmed, J., Siyal, M.Y., Adeel, F., Hussain, A. (2013). Advancements in Silicon Photonics. In: Optical Signal Processing by Silicon Photonics. SpringerBriefs in Materials. Springer, Singapore. https://doi.org/10.1007/978-981-4560-11-5_4

Download citation

Publish with us

Policies and ethics