Skip to main content

Fibers with the Tunable Structure Colors Based on the Ordered and Amorphous Structures

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

Dyeing is a process that is critical in the coloring of fibers or fabrics in the textile industry. The waste water discarded from the dyeing process gives rise to the severe pollution to the environment. In this chapter, a novel coloration strategy was presented, which uses structural colors by incorporating ordered photonic and amorphous structure onto fibers. This coloration strategy originates from color structures found in nature, such as butterfly wings and parrot feathers. Furthermore, recent results on the preparation, and mechanical and optical properties of these structurally colored fibers that mimic natural color structures, are discussed in detail. It is believed that structural coloration of fibers has potential as the environment-friendly, non-fading, and economic solution demanded by the current textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perkins WS (1996) Textile coloration and finishing. Carolina Academic Press, Durham

    Google Scholar 

  2. Rajkumar D, Song BJ, Kim JG (2007) Electrochemical degradation of reactive blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes Pigments 72:1–7. doi:10.1016/j.dyepig.2005.07.015

    Article  Google Scholar 

  3. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of color from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58:179–196. doi:10.1016/S0143-7208(03)00064-0

    Article  Google Scholar 

  4. Pauling L (1939) A theory of the color of dyes. Proc Natl Acad Sci U S A 25(11):577

    Article  Google Scholar 

  5. Gabrielsen E (1948) Effects of different chlorophyll concentrations on photosynthesis in foliage leaves. Physiol Plant 1(1):5–37. doi:10.1111/j.1399-3054.1948.tb07108.x

    Article  Google Scholar 

  6. Ball P (2012) Nature’s color tricks. Sci Am 306(5):74–79. doi:10.1038/scientificamerican0512-74

    Article  Google Scholar 

  7. Rayleigh L (1930) The iridescent colours of birds and insects. Proc Roy Soc Lond A 128(808):624–641. doi:10.1098/rspa.1930.0136

    Article  Google Scholar 

  8. Kinoshita S, Yoshioka S (2005) Structural colors in nature: the role of regularity and irregularity in the structure. Chem Phys Chem 6:1442–1459. doi:10.1002/cphc.200500007

    Google Scholar 

  9. Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401–076431. doi:10.1088/0034-4885/71/7/076401

    Article  Google Scholar 

  10. Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317. doi:10.1039/c2cs15267c

    Article  Google Scholar 

  11. Parker AR, McPhedran RC, McKenzie DR, Botten LC, Nicorovici NAP (2001) Photonic engineering-aphrodite’s iridescence. Nature 409:36–37

    Article  Google Scholar 

  12. Kinoshita S, Yoshioka S, Fujii Y, Okamoto N (2002) Photophysics of structural color in the morpho butterflies. FORMA 17(2):103–121

    Google Scholar 

  13. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213–2217. doi:10.1002/adma.200601946

    Article  Google Scholar 

  14. Mie G (2006) Beitrage zur optik truber medien, speziell kolloidaler metallosungen. Ann Phys 330:377–445. doi:10.1002/andp.19083300302

    Article  Google Scholar 

  15. Noh H, Liew SF, Saranathan V, Mochrie SGJ, Prum RO, Dufresne ER, Cao H (2010) How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv Mater 22:2871–2880. doi:10.1002/adma.200903699

    Article  Google Scholar 

  16. Lee I, Kim D, Kal J, Baek H, Kwak D, Go D, Kim E, Kanf C, Chung J, Jang Y, Ji S, Joo J, Kang Y (2010) Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency. Adv Mater 22(44):4973–4977. doi:10.1002/adma.201001954

    Article  Google Scholar 

  17. Yin H, Dong B, Liu X, Zhan T, Shi L, Zi J, Yablonovitch E (2012) Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw. Proc Natl Acad Sci U S A 109:10798–10801. doi:10.1073/pnas.1204383109

    Article  Google Scholar 

  18. Dufresne ER, Noh H, Saranathan V, Mochrie SGJ, Cao H, Prum RO (2009) Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter 5:1792–1795. doi:10.1039/b902775k

    Article  Google Scholar 

  19. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062. doi:10.1103/physrevlett.58.2059

    Article  Google Scholar 

  20. John S (1987) Strong localization of photons in certain disordered dielectric super lattices. Phys Rev Lett 58:2486–2489. doi:10.1103/physrevlett.58.2486

    Article  Google Scholar 

  21. Wang H, Zhang KQ (2013) Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13:4129–4213. doi:10.3390/s130404192

    Google Scholar 

  22. Vignolini S, Raudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Stiner U (2012) Pointillist structural color in Pollia fruit. PANS 109:15712–15715. doi:10.1073/pnas.1210105109

    Article  Google Scholar 

  23. Land MF (1966) A multilayer interference reflector in the eye of the scallop, pecten maximus. J Exp Biol 45:433–447

    Google Scholar 

  24. Ozin GA, Arsenault AC (2008) P-ink and elast-ink from lab to market. Mater Today 11:44–51

    Article  Google Scholar 

  25. Gauvreau B, Guo N, Schicker K, Stoeffler K, Boismenu F, Ajji A, Wingfield R, Dubois C, Skorobogatiy M (2008) Color-changing and color-tunable photonic bandgap fiber textiles. Opt Express 16:15677–15693. doi:10.1364/OE.16.015677

    Article  Google Scholar 

  26. Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P (2013) Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv Mater 25:2239–2245. doi:10.1002/adma.201203529

    Article  Google Scholar 

  27. Liu Z, Zhang Q, Wang H, Li Y (2011) Structural colored fiber fabricated by a facile colloid self-assembly method in micro-space. Chem Commun 47:12801–12803. doi:10.1039/c1cc15588a

    Article  Google Scholar 

  28. Liu Z, Zhang Q, Wang H, Li Y (2013) Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method. Nanoscale 5:6917–6922. doi:10.1039/c3nr01766d

    Article  Google Scholar 

  29. Liu Z, Zhang Q, Wang H, Li Y (2013) Magnetic field induced formation of visually structural colored fiber in micro-space. J Colloid Interface Sci 406:18–23

    Article  Google Scholar 

  30. Zhou N, Zhang A, Shi L, Zhang KQ (2012) Fabrication of structurally-colored fibers with axial core − shell structure via electrophoretic deposition and their optical properties. ACS Macro Lett 2:116–120. doi:10.1021/mz300517n

    Article  Google Scholar 

  31. Finlayson CE, Goddard C, Papachristodoulou E, Snoswell DRE, Kontogeorgos A, Spahn P, Hellmann GP, Hess O, Baumberg JJ (2011) Ordering in stretch-tunable polymeric opal fibers. Opt Express 19:3144–3154. doi:10.1364/OE.19.003144

    Article  Google Scholar 

  32. Prum RO, Torres R, Kovach C, Williamson S, Goodman SM (1999) Coherent light scattering by nanostructured collagen arrays in the caruncles of the malagasy asities (eurylaimidae: aves). J Exp Biol 202:3507–3522

    Google Scholar 

  33. Dong BQ, Liu XH, Zhan TR, Jiang LP, Yin HW, Liu F, Zi J (2010) Structural coloration and photonic pseudogap in natural random close-packing photonic structures. Opt Express 18:14430–14438. doi:10.1364/oe.18.014430

    Article  Google Scholar 

  34. Prum RO, Torres RH (2004) Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. J Exp Biol 207:2157–2172. doi:10.1242/jeb.00989

    Article  Google Scholar 

  35. Takeoka Y, Honda M, Seki T, Ishii M, Nakamura H (2009) Structural colored liquid membrane without angle dependence. ACS Appl Mater Interfaces 1:982–986. doi:10.1021/am900074v

    Article  Google Scholar 

  36. Ueno K, Sano Y, Inaba A, Kondoh M, Watanabe M (2010) Soft glassy colloidal arrays in an ionic liquid: colloidal glass transition, ionic transport, and structural color in relation to microstructure. J Phys Chem B 114:13095–13103. doi:10.1021/jp106872w

    Article  Google Scholar 

  37. Forster JD, Noh H, Liew SF, Saranathan V, Schreck CF, Yang L, Park JG, Prum RO, Mochrie SGJ, Hern CSO, Cao H, Dufresne ER (2010) Biomimetic isotropic nanostructures for structural coloration. Adv Mater 22:2939–2944. doi:10.1002/adma.200903693

    Article  Google Scholar 

  38. Shi L, Yin H, Zhang R, Liu X, Zi J, Zhao D (2010) Macroporous oxide structures with short-range order and bright structural coloration: a replication from parrot feather barbs. J Mater Chem 20:90–93. doi:10.1039/b915625a

    Article  Google Scholar 

  39. Dong BQ, Zhan TR, Liu XH, Jiang LP, Liu F, Hu XH, Zi J (2011) Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis. Phys Rev 84:011915. doi:10.1103/PhysRevE.84.011915

    Google Scholar 

  40. Li H, Chang L, Wang J, Yang L, Song Y (2008) A colorful oil-sensitive carbon inverse opal. J Mater Chem 18:5098–5103. doi:10.1039/b808675c

    Article  Google Scholar 

  41. Choi SY, Mamak M, Freymann GV, Chipra N, Ozin GA (2006) Mesoporous bragg stack color tunable sensors. Nano Lett 6:2456–2461. doi:10.1021/nl061580m

    Article  Google Scholar 

  42. Wang Z, Zhang J, Xie J, Li C, Li Y, Liang S, Tian Z, Wang T, Zhang H, Li H, Xu W, Yang B (2010) Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band. Adv Funct Mater 20:3784–3790. doi:10.1002/adfm.201001195

    Article  Google Scholar 

  43. Reese CE, Mikhonin AV, Kamenjicki M, Tikhonov A, Asher SA (2004) Nanogel nanosecond photonic crystal optical switching. J Am Chem Soc 126:1493–1496. doi:10.1021/ja037118a

    Article  Google Scholar 

  44. Kubo S, Gu ZZ, Takahashi K, Fujishima A, Segawa H, Sato O (2004) Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure. J Am Chem Soc 126:8314–8319. doi:10.1021/ja0495056

    Article  Google Scholar 

  45. Pavlichenko I, Exner AT, Guehl M, Lugli P, Scarpa G, Lotsch BV (2012) Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks. J Phys Chem C 116:298–305. doi:10.1021/jp208733t

    Article  Google Scholar 

  46. Saito H, Takeoka Y, Watanabe M (2003) Simple and precision design of porous gel as a visible indicator for ionic species and concentration. Chem Commun 7:2126–2127. doi:10.1039/b304306a

    Article  Google Scholar 

  47. Lim HS, Lee JH, Walish JJ, Thomas EL (2012) Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 6:8933–8939. doi:10.1021/nn302949n

    Article  Google Scholar 

  48. Gui Q, Wang W, Baohua G, Liang L (2012) A combined physical − chemical polymerization process for fabrication of nanoparticle − hydrogel sensing materials. Macromolecules 45:8382–8386. doi:10.1021/ma301119f

    Article  Google Scholar 

  49. Nakayama D, Takeoka Y, Watanabe M, Kataoka K (2003) Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem 115:4329–4332. doi:10.1002/ange.200351746

    Article  Google Scholar 

  50. Zhang X, Ma X, Dou F, Zhao P, Liu H (2011) A biosensor based on metallic photonic crystals for the detection of specific bioreactions. Adv Funct Mater 21:4219–4227. doi:10.1002/adfm.201101366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Yuan, W., Wu, C., Zhou, N., Zhang, KQ. (2015). Fibers with the Tunable Structure Colors Based on the Ordered and Amorphous Structures. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_6

Download citation

Publish with us

Policies and ethics