Skip to main content

Interaction of Wave-Induced Motion and Bioelectricity Generation for Floating Microalgal Biophotovoltaic System

  • Conference paper
  • First Online:
ICCOEE2020 (ICCOEE 2021)

Abstract

Biophotovoltaic (BPV) system is a developing photo-bio-electrochemical technology that harnesses solar light for power generation. However, a large scale BPV farm is needed for megawatts application, which may not be economically viable as an onshore facility. Therefore, a floating BPV can be an alternative option whereby the spacious offshore area can be utilized; nonetheless, the liquid inside a floating BPV is inevitable to be affected by the ocean wave motions. Hence, the interaction effects of wave motions and power generation of floating BPV device is a crucial decision-making factor to migrate BPV from onshore to offshore area. In this study, a scaled model experiment was conducted to compare the difference in power output between static and floating BPV devices. The findings are expected to provide better understanding on the correlation of these parameters in the implementation of a floating solution for BPV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Global Energy and CO2 Status Report 2018, International Energy Agency, Paris, 4 (2019)

    Google Scholar 

  2. International Energy Outlook 2019, U.S. Energy Information Administration, Washington, p. 23 (2019)

    Google Scholar 

  3. Bajracharya, S., Sharma, M., Mohanakrishna, G., Dominguez Benneton, X., Strik, D.P.B.T.B., Sarma, P.M., Pant, D.: An overview on emerging bioelectrochemical systems (BESs) technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew. Energ. 98, 153–170 (2016)

    Article  Google Scholar 

  4. Tschortner, J., Lai, B., Kromer, J.O.: Biophotovoltaics: green power generation from sunlight and water. Front Microbiol. 10(866), 1–19 (2019)

    Google Scholar 

  5. Chandra, R., Venkata Mohan, S., Roberto, P.-S., Ritmann, B.E., Cornejo, R.A.S.: Biophotovoltaics: conversion of light energy to bioelectricity through photosynthetic microbial fuel cell technology. Microbial Fuel Cell, pp. 373–387. (2017)

    Google Scholar 

  6. De Caprariis, B., De Filippis, P., Di Battista, A., Di Palma, L., Scarsella, M.: Exoelectrogenic activity of a green microalgae, chlorella vulgaris, in a bio-photovoltaic cells (BPVs). Chem. Eng. Trans. 38, 523–528 (2014)

    Google Scholar 

  7. Wey, L.T., Bombelli, P., Chen, X., Lawrence, J.M., Rabideau, C.M., Rowden, S.J.L., Zhang, J.Z., Howe, C.J.: The development of biophotovoltaic systems for power generation and biological analysis. Chem. ElectroChem. 6, 1–13 (2019)

    Google Scholar 

  8. Rowden, S.J.L., Bombelli, P., Howe, C.J.: Biophotovoltaics: design and study of bioelectrochemical systems for biotechnological applications and metabolic investigation. Meth. Mol Biol. 1770, 335–346 (2018)

    Article  Google Scholar 

  9. Li, X., Liu, T., Wang, K., Waite, T.D.: Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina. Environ. Sci. Technol. 49(3), 1392–1399 (2015)

    Article  Google Scholar 

  10. Patil, S.A., Hägerhäll, C., Gorton, L.: Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanaly. Rev. 4(2–4), 159–192 (2012)

    Article  Google Scholar 

  11. McCormick, A.J., Bombelli, P., Scott, A.M., Philips, A.J., Smith, A.G., Fisher, A.C., Howe, C.J.: Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energ. Environ. Sci. 4(11), 4699 (2011)

    Article  Google Scholar 

  12. Ng, F.L., Phang, S.M., Periasamy, V., Beardall, J., Yunus, K., Fisher, A.C.: Algalbiophotovoltaic (BPV) device for generation of bioelectricity using synechococcus elongates (Cyanophyta). J. Appl. Phycol. 30(6), 2981–2988 (2018)

    Article  Google Scholar 

  13. Saar, K.L., Bombelli, P., Lea-Smith, D.J., Call, T., Aro, E.-M., Müller, T., Howe, C.J., Knowles, T.P.J.: Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nat. Energ. 3(1), 75–81 (2018)

    Article  Google Scholar 

  14. Ng, F.-L., Jaafar, M.M., Phang, S.-M., Chan, Z., Salleh, N.A., Azmi, S.Z., Yunus, K., Fisher, A.C., Periasamy, V.: Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms. Sci. Rep. 4(1), 7562 (2014)

    Article  Google Scholar 

  15. Bateson, P., Fleet, J.E.H., Riseley, A.S., Janeva, E., Marcella, A.S., Farinea, C., Kuptsova, M., Pueyo, C.P., Howe, C.J., Bombelli, P., Parker, B.M.: Electrochemical characterisation of bio-bottle-voltaic (BBV) systems operated with algae and built with recycled materials. Biology 7(2), 26 (2018)

    Article  Google Scholar 

  16. Cereda, A., Hitchcock, A., Symes, M.D., Cronin, L., Bibby, T.S., Jones, A.K.: A bioelectrochemical approach to characterize extracellular electron transfer by synechocystis sp. PCC6803. PLoS ONE 9(3), e91484 (2014)

    Article  Google Scholar 

  17. Logan, B.E., Rossi, R., Ragab, A., Saikaly, P.E.: Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 17(5), 307–319 (2019)

    Article  Google Scholar 

  18. Solanki, C.S.: Solar Photovoltaic Technology and Systems: A Manual for Technicians, Trains and Engineers, p. 43. PHL Learning Limited, Delhi (2013)

    Book  Google Scholar 

  19. Kumar, N., Juneja, J.K.: Comprehensive Objective Physics, p. 488. Golden Bells, New Delhi (2006)

    Google Scholar 

  20. Rea, M., Bierman, A.: A new rationale for setting light source luminous efficacy requirements. Light. Res. Technol. 50(3), 340–359 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate Universiti Teknologi Malaysia (Centre of Excellence grant 03G92) for the supports in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Chun Chin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chin, JC. et al. (2021). Interaction of Wave-Induced Motion and Bioelectricity Generation for Floating Microalgal Biophotovoltaic System. In: Mohammed, B.S., Shafiq, N., Rahman M. Kutty, S., Mohamad, H., Balogun, AL. (eds) ICCOEE2020. ICCOEE 2021. Lecture Notes in Civil Engineering, vol 132. Springer, Singapore. https://doi.org/10.1007/978-981-33-6311-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6311-3_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6310-6

  • Online ISBN: 978-981-33-6311-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics