Skip to main content

Feature Evaluation of EMG Signals for Hand Gesture Recognition Based on Mutual Information, Fuzzy Entropy and RES Index

  • Conference paper
  • First Online:
Advances and Applications in Computer Science, Electronics and Industrial Engineering

Abstract

In the field of hand gesture recognition based on electromyography, the selection of features is still a matter of research because the accuracy of feature evaluation techniques depends on the distribution underling a feature space. Currently, there are a lot of kinds of features, so a selection method is required in order to find an optimal feature subset. The selection of features can be done based on either classifier methods or statistical measurement indexes. On one hand, the use of classifier methods takes considerable time, consequently, they are computationally expensive. On the other hand, the use of a statistical index allows to select features based on properties, and they are less expensive in terms of time and computational costs. In this context, this study analyzed different statistical indexes to discover optimal feature subsets and predicts which one may have the best performance in terms of classification and recognition accuracy. For this purpose, four indexes were analyzed: the sum of RES (separation and compactness index), the sum of Fuzzy Entropies, and both of these indexes divided by the mutual information of feature subset. These index values were calculated for 10 different feature subsets obtained from nineteen time-domain features which have been investigated by many researchers for extracting useful information from an electromyography signal. The feature subsets were implemented in four classifiers (Artificial Neural Network, k-nearest Neighbors Algorithm, Support Vector Machine, and decision trees) to find the best statistical index which tries to quantify the suitableness of the feature space. Each tested index in this work was analyzed in terms of classification and recognition accuracy for each machine learning algorithm.

This work has been supported by the Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) and Escuela Politécnica Nacional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aceves-Fernandez, M., Ramos-Arreguin, J., Gorrostieta-Hurtado, E., Pedraza-Ortega, J.: Methodology proposal of emg hand movement classification based on cross recurrence plots. Comput. Math. Methods Med. 2019 (2019)

    Google Scholar 

  2. Al-Angari, H.M., Kanitz, G., Cipriani, C.: Distance and mutual information methods for emg feature and channel subset selection for classification of hand movements. Biomed. Signal Process. Control 27, 24–31 (2016)

    Article  Google Scholar 

  3. Al Omari, F., Hui, J., Mei, C., Liu, G.: Pattern recognition of eight hand motions using feature extraction of forearm emg signal. Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. 84(3), 473–480 (2014)

    Article  Google Scholar 

  4. Ameur, S., Khalifa, A.B., Bouhlel, M.S.: A comprehensive leap motion database for hand gesture recognition. In: 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications, SETIT 2016, pp. 514–519. IEEE (2017). https://doi.org/10.1109/SETIT.2016.7939924

  5. Arief, Z., Sulistijono, I.A., Ardiansyah, R.A.: Comparison of five time series emg features extractions using myo armband. In: 2015 International Electronics Symposium (IES), pp. 11–14. IEEE (2015)

    Google Scholar 

  6. Arjunan, S.P., Kumar, D.K.: Fractal theory based non-linear analysis of semg. In: 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, pp. 545–548 (2007). https://doi.org/10.1109/ISSNIP.2007.4496901

  7. Benalcázar, M.E., Anchundia, C.E., Zea, J.A., Zambrano, P., Jaramillo, A.G., Segura, M.: Real-time hand gesture recognition based on artificial feed-forward neural networks and emg. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 1492–1496. IEEE (2018)

    Google Scholar 

  8. Bhingarkar, S., Shah, D.: Fuzzy entropy based feature selection for website user classification in edos defense. In: Bhattacharyya, P., Sastry, H.G., Marriboyina, V., Sharma, R. (eds.) Smart and Innovative Trends in Next Generation Computing Technologies, pp. 440–449. Springer, Singapore (2018)

    Chapter  Google Scholar 

  9. Caiza, G., Garcia, C., Naranjo, J., Garcia, M.: Flexible robotic teleoperation architecture for intelligent oil fields. Heliyon 6(4) (2020). https://doi.org/10.1016/j.heliyon.2020.e03833

  10. Caiza, G., Saeteros, M., Oñate, W., Garcia, M.: Fog computing at industrial level, architecture, latency, energy, and security: a review. Heliyon 6(4) (2020). https://doi.org/10.1016/j.heliyon.2020.e03706

  11. Das, A.K., Pati, S.K., Ghosh, A.: Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm. Knowl. Inf. Syst. 62(2), 423–455 (2020)

    Article  Google Scholar 

  12. Elamvazuthi, I., Ling, G., Nurhanim, K.R.K., Vasant, P., Parasuraman, S.: Surface electromyography (semg) feature extraction based on daubechies wavelets. In: 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), pp. 1492–1495. IEEE (2013)

    Google Scholar 

  13. Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., Aszmann, O.C.: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabilit. Eng. 22(4), 797–809 (2014)

    Google Scholar 

  14. Gokgoz, E., Subasi, A.: Comparison of decision tree algorithms for emg signal classification using dwt. Biomed. Signal Process. Control 18, 138–144 (2015)

    Article  Google Scholar 

  15. Hu, G.C.A.P.H., Limsakul, P.P.C.: Evaluation of emg feature extraction for classification of exercises in preventing falls in the elderly. In: The 10th International PSU Engineering Conference (2012)

    Google Scholar 

  16. Huang, Y., Wu, H., Liu, H., Yin, Z.: Intelligent Robotics and Applications: 10th International Conference, ICIRA 2017, Wuhan, China, Proceedings, vol. 10462. Springer (2017). Accessed 16–18 Aug 2017

    Google Scholar 

  17. Hudgins, B., Parker, P., Scott, R.N.: A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 40(1), 82–94 (1993). https://doi.org/10.1109/10.204774

    Article  Google Scholar 

  18. Jali, M.H., Ibrahim, I.M., Sulaima, M.F., Bukhari, W., Izzuddin, T.A., Nasir, M.N.: Features extraction of emg signal using time domain analysis for arm rehabilitation device. In: AIP Conference Proceedings. vol. 1660, p. 070041. AIP Publishing LLC (2015)

    Google Scholar 

  19. Khushaba, R.N., Al-Jumaily, A., Al-Ani, A.: Novel feature extraction method based on fuzzy entropy and wavelet packet transform for myoelectric control. In: 2007 International Symposium on Communications and Information Technologies, pp. 352–357 (2007)

    Google Scholar 

  20. Küçük, H., Eminoğlu, İ.: Classification of emg signals by k-nearest neighbor algorithm and support vector machine methods. In: 2013 21st Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2013)

    Google Scholar 

  21. Liang, S., Ma, A., Yang, S., Wang, Y., Ma, Q.: A review of matched-pairs feature selection methods for gene expression data analysis. Comput. Struct. Biotechnol. J. 16, 88–97 (2018)

    Article  Google Scholar 

  22. Montalvo, W., Escobar-Naranjo, J., Garcia, C., Garcia, M.: Low-cost automation for gravity compensation of robotic arm. Appl. Sci. (Switzerland) 10(11) (2020). https://doi.org/10.3390/app10113823

  23. Montalvo, W., Garcia, C., Naranjo, J., Ortiz, A., Garcia, M.: Tele-operation system for mobile robots using in oil & gas industry [sistema de tele-operación para robots móviles en la industria del petróleo y gas]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 2020(E29), 351–365 (2020)

    Google Scholar 

  24. Nilsson, N., Håkansson, B., Ortiz-Catalan, M.: Classification complexity in myoelectric pattern recognition. J. Neuroeng. Rehabil. 14(1), 68 (2017)

    Article  Google Scholar 

  25. Phinyomark, A., Hirunviriya, S., Limsakul, C., Phukpattaranont, P.: Evaluation of emg feature extraction for hand movement recognition based on euclidean distance and standard deviation. In: ECTI-CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 856–860 (May 2010)

    Google Scholar 

  26. Phinyomark, A., Hirunviriya, S., Nuidod, A., Phukpattaranont, P., Limsakul, C.: Evaluation of emg feature extraction for movement control of upper limb prostheses based on class separation index. In: 5th Kuala Lumpur International Conference on Biomedical Engineering 2011, pp. 750–754. Springer Berlin Heidelberg (2011)

    Google Scholar 

  27. Phinyomark, A., Chujit, G., Phukpattaranont, P., Limsakul, C., Hu, H.: A preliminary study assessing time-domain emg features of classifying exercises in preventing falls in the elderly. In: 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 1–4. IEEE (2012)

    Google Scholar 

  28. Phinyomark, A., Khushaba, R.N., Ibáñez-Marcelo, E., Patania, A., Scheme, E., Petri, G.: Navigating features: a topologically informed chart of electromyographic features space. J. R. Soc. Interface 14(137), 20170734 (2017)

    Article  Google Scholar 

  29. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: Application of wavelet analysis in emg feature extraction for pattern classification. Meas. Sci. Rev. 11(2), 45–52 (2011)

    Article  Google Scholar 

  30. Phinyomark, A., N Khushaba, R., Scheme, E.: Feature extraction and selection for myoelectric control based on wearable emg sensors. Sensors 18(5),  1615 (2018)

    Google Scholar 

  31. Pothirat, T., Chatpun, S., Phukpattaranont, P., Vongjandaeng, D.: The optimal electromyography feature for oral muscle movements. In: The 6th 2013 Biomedical Engineering International Conference, pp. 1–5. IEEE (2013)

    Google Scholar 

  32. Rhodes, C., Allmendinger, R., Climent, R.: New interfaces for classifying performance gestures in music. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 31–42. Springer (2019)

    Google Scholar 

  33. Scherer, R., Rao, R.: Non-Manual Control Devices. In: Handbook of Research on Personal Autonomy Technologies and Disability Informatics, pp. 233–250. IGI Global (2011). https://doi.org/10.4018/978-1-60566-206-0.ch015

  34. She, H., Zhu, J., Tian, Y., Wang, Y., Yokoi, H., Huang, Q.: Semg feature extraction based on stockwell transform improves hand movement recognition accuracy. Sensors 19(20), 4457 (2019)

    Article  Google Scholar 

  35. Shi, W.T., Lyu, Z.J., Tang, S.T., Yang, C.Y.: A bionic hand controlled by hand gesture recognition based on surface emg signals: a preliminary study. Biocybernet. Biomed. Eng. 38(1), 126–135 (2018)

    Article  Google Scholar 

  36. Szabó, Z.: Information theoretical estimators toolbox. J. Mach. Learn. Res. 15(1), 283–287 (2014)

    MATH  Google Scholar 

  37. Tkach, D., Huang, H., Kuiken, T.A.: Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 7(1), 21 (2010)

    Article  Google Scholar 

  38. Too, J., Abdullah, A.R., Zawawi, T.T., Musa, H.: Classification of emg signal based on time domain and frequency domain features. Int. J. Hum. Technol. Interaction (IJHaTI) 1(1), 25–30 (2017)

    Google Scholar 

  39. Too, J., Abdullah, A.R., Mohd Saad, N., Tee, W.: Emg feature selection and classification using a pbest-guide binary particle swarm optimization. Computation 7(1), 12 (2019)

    Article  Google Scholar 

  40. Too, J., Abdullah, A.R., Saad, N.M.: Classification of hand movements based on discrete wavelet transform and enhanced feature extraction. Int. J. Adv. Comput. Sci. Appl. 10(6) (2019). https://doi.org/10.14569/IJACSA.2019.0100612

  41. Trigili, E., Grazi, L., Crea, S., Accogli, A., Vitiello, N., Panarese, A.: Detection of movement onset using emg signals for upper-limb exoskeletons in reaching tasks. J. Neuroeng. Rehabil. 16(1), 45 (2019)

    Article  Google Scholar 

  42. Villarejo, J., Frizera, A., Bastos, T.F., Sarmiento, J.: Pattern recognition of hand movements with low density semg for prosthesis control purposes. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 1–6. IEEE (2013)

    Google Scholar 

  43. Vimos, V.H., Benalcázar, M., Oña, A.F., Cruz, P.J.: A novel technique for improving the robustness to sensor rotation in hand gesture recognition using semg. In: International Conference on Computer Science, Electronics and Industrial Engineering (CSEI), pp. 226–243. Springer (2019)

    Google Scholar 

  44. Xi, X., Tang, M., Luo, Z.: Feature-level fusion of surface electromyography for activity monitoring. Sensors 18(2), 614 (2018)

    Article  Google Scholar 

  45. Xi, X., Tang, M., Miran, S.M., Luo, Z.: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable semg sensors. Sensors 17(6), 1229 (2017)

    Article  Google Scholar 

  46. Xing, K., Yang, P., Huang, J., Wang, Y., Zhu, Q.: A real-time emg pattern recognition method for virtual myoelectric hand control. Neurocomputing 136, 345–355 (2014)

    Article  Google Scholar 

  47. Young, A.J., Smith, L.H., Rouse, E.J., Hargrove, L.J.: Classification of simultaneous movements using surface emg pattern recognition. IEEE Trans. Biomed. Eng. 60(5), 1250–1258 (2012)

    Article  Google Scholar 

  48. Zea, J.A., Benalcázar, M.E.: Real-time hand gesture recognition: A long short-term memory approach with electromyography. In: International Conference on Computer Science, Electronics and Industrial Engineering (CSEI), pp. 155–167. Springer (2019)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) and by the Escuela Politécnica Nacional (EPN) for the development of the research project PIE-CEPRA-2019-13-Reconocimiento de Gestos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Isabel Barona-Lopez .

Editor information

Editors and Affiliations

Appendix: EMG Feature Subsets

Appendix: EMG Feature Subsets

See Tables 1, 2, 3 and 4

Table 1 EMG feature subsets for the sRES index
Table 2 EMG feature subsets for the RESMI index
Table 3 EMG feature subsets for the sFE index
Table 4 EMG feature subsets for the FEMI index

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barona-Lopez, L.I., Valdivieso-Caraguay, A.L., Benalcazar, M.E., Aguas, X., Zea, J.A. (2021). Feature Evaluation of EMG Signals for Hand Gesture Recognition Based on Mutual Information, Fuzzy Entropy and RES Index. In: García, M.V., Fernández-Peña, F., Gordón-Gallegos, C. (eds) Advances and Applications in Computer Science, Electronics and Industrial Engineering. Advances in Intelligent Systems and Computing, vol 1307. Springer, Singapore. https://doi.org/10.1007/978-981-33-4565-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4565-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4564-5

  • Online ISBN: 978-981-33-4565-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics