Skip to main content

Mitochondrial Dynamics in Physiology and Pathology of Myelinated Axons

  • Chapter
  • First Online:
Myelin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1190))

Abstract

Mitochondria play essential roles in neurons and abnormal functions of mitochondria have been implicated in neurological disorders including myelin diseases. Since mitochondrial functions are regulated and maintained by their dynamic behavior involving localization, transport, and fusion/fission, modulation of mitochondrial dynamics would be involved in physiology and pathology of myelinated axons. In fact, the integration of multimodal imaging in vivo and in vitro revealed that mitochondrial localization and transport are differentially regulated in nodal and internodal regions in response to the changes of metabolic demand in myelinated axons. In addition, the mitochondrial behavior in axons is modulated as adaptive responses to demyelination irrespective of the cause of myelin loss, and the behavioral modulation is partly through interactions with cytoskeletons and closely associated with the pathophysiology of demyelinating diseases. Furthermore, the behavior and functions of axonal mitochondria are modulated in congenital myelin disorders involving impaired interactions between axons and myelin-forming cells, and, together with the inflammatory environment, implicated in axonal degeneration and disease phenotypes. Further studies on the regulatory mechanisms of the mitochondrial dynamics in myelinated axons would provide deeper insights into axo–glial interactions mediated through myelin ensheathment, and effective manipulations of the dynamics may lead to novel therapeutic strategies protecting axonal and neuronal functions and survival in primary diseases of myelin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215

    Article  CAS  PubMed  Google Scholar 

  • Andrews H, White K, Thomson C, Edgar J, Bates D, Griffiths I, Turnbull D, Nichols P (2006) Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse. J Neurosci Res 83(8):1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113:1–18

    Article  CAS  PubMed  Google Scholar 

  • Arroyo EJ, Xu T, Grinspan J, Lambert S, Levinson SR, Brophy PJ, Peles E, Scherer SS (2002) Genetic dysmyelination alters the molecular architecture of the nodal region. J Neurosci 22:1726–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsoum MJ, Yuan H, Aa G, Liot G, Kushnareva Y, Gräber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou J-C, Youle RJ, Sa L, Ellisman MH, Ga P, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat MA, JC Rios YL, Garcia-Fresco GP, Ching W, St Martin M, Li J, Einheber S, Chesler M, Rosenbluth J, Salzer JL, Bellen HJ (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30(2):369–383

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Stoffel W (1989) Myelin-deficient rat: a point mutation in exon III (A----C, Thr75----Pro) of the myelin proteolipid protein causes dysmyelination and oligodendrocyte death. EMBO J 8:3295–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B (2001) Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30(2):385–397

    Article  CAS  PubMed  Google Scholar 

  • Brady ST, Witt AS, Kirkpatrick LL, de Waegh SM, C Readhead PHT, Lee VM (1999) Formation of compact myelin is required for maturation of the axonal cytoskeleton. J Neurosci 19(17):7278–7288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggman KL, Bock DD (2012) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22:154–161

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Evans RD, Black J, Ransom BR (2012) Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol 72(3):406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch KB, Bereiter-Hahn J, Wittig I, Schagger H, Jendrach M (2006) Mitochondrial dynamics generate equal distribution but patchwork localization of respiratory complex I. Mol Membr Biol 23:509–520

    Article  CAS  PubMed  Google Scholar 

  • Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14(14):1272–1276

    Article  CAS  PubMed  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Chang DT, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80(5):241–268

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chan DC (2006) Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol 18(4):453–459

    Article  CAS  PubMed  Google Scholar 

  • Chiang H, Ohno N, Hsieh YL, Mahad DJ, Kikuchi S, Komuro H, Hsieh ST, Trapp BD (2015) Mitochondrial fission augments capsaicin-induced axonal degeneration. Acta Neuropathol 129(1):81–96

    Article  CAS  PubMed  Google Scholar 

  • Cho B, Choi SY, Cho HM, Kim HJ, Sun W (2013) Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Experimental neurobiology 22(3):149–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Colello RJ, Pott U, Schwab ME (1994) The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathway. J Neurosci 14(5. Pt 1):2594–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courchet J, Lewis TL Jr, Lee S, Courchet V, Liou DY, Aizawa S, Polleux F (2013) Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 153(7):1510–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craner MJ, Hains BC, Lo AC, Black J, Waxman SG (2004a) Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127:294–303

    Article  PubMed  Google Scholar 

  • Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG (2004b) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci U S A 101(21):8168–8173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csiza CK, de Lahunta A (1979) Myelin deficiency (md): a neurologic mutant in the Wistar rat. Am J Pathol 95:215–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210

    Article  CAS  PubMed  Google Scholar 

  • Dentinger MP, Barron KD, Csiza CK (1985) Glial and axonal development in optic nerve of myelin deficient rat mutant. Brain Res 344(2):255–266

    Article  CAS  PubMed  Google Scholar 

  • Edgar JM, McLaughlin M, Yool D, Zhang SC, Fowler JH, Montague P, Ja B, McCulloch MC, Duncan ID, Garbern J, Nave K, Griffiths IR (2004) Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J Cell Biol 166:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar JM, McCulloch MC, Montague P, Brown AM, Thilemann S, Pratola L, Gruenenfelder FI, Griffiths IR, Nave KA (2010) Demyelination and axonal preservation in a transgenic mouse model of Pelizaeus-Merzbacher disease. EMBO Mol Med 2:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Einheber S, Bhat MA, Salzer JL (2006) Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of ranvier. Neuron Glia Biol 2(3):165–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferree AW, Trudeau K, Zik E, Benador IY, Twig G, Gottlieb RA, Shirihai OS (2013) MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy 9(11):1887–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleidervish I, Lasser-Ross N, Gutnick MJ, Ross WN (2010) Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nat Neurosci 13:852–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855

    Article  CAS  PubMed  Google Scholar 

  • Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffin JW, Price DL (1981) Schwann cell and glial responses in beta, beta’-iminodipropionitrile intoxication. I. Schwann cell and oligodendrocyte ingrowths. J Neurocytol 10(6):995–1007

    Article  CAS  PubMed  Google Scholar 

  • Griffiths I, Klugmann M, Anderson T, Thomson C, Vouyiouklis D, Nave KA (1998a) Current concepts of PLP and its role in the nervous system. Microsc Res Tech 41(5):344–358

    Article  CAS  PubMed  Google Scholar 

  • Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F, McCulloch M, Nadon N, Nave KA (1998b) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280(5369):1610–1613

    Article  CAS  PubMed  Google Scholar 

  • Grohm J, Kim SW, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19(9):1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19(2):81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan V, White K, Edgar J, McGill A, Karim S, McLaughlin M, Griffiths I, Turnbull D, Nichols P (2009) Increase in mitochondrial density within axons and supporting cells in response to demyelination in the Plp1 mouse model. J Neurosci Res 87(2):452–459

    Article  CAS  PubMed  Google Scholar 

  • Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118(Pt 23):5411–5419

    Article  CAS  PubMed  Google Scholar 

  • Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    Article  CAS  PubMed  Google Scholar 

  • Horga A, Pitceathly RD, Blake JC, Woodward CE, Zapater P, Fratter C, Mudanohwo EE, Plant GT, Houlden H, Sweeney MG, Hanna MG, Reilly MM (2014) Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia. Brain 137(Pt 12):3200–3212

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttemann M, Zhang Z, Mullins C, Bessert D, Lee I, Nave KA, Appikatla S, Skoff RP (2009) Different proteolipid protein mutants exhibit unique metabolic defects. ASN Neuro 1(3)

    Article  CAS  Google Scholar 

  • Inoue K (2005) PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2. Neurogenetics 6(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Nakamura R, Mikoshiba K, Tsukada Y (1981) Fine structure of the central myelin sheath in the myelin deficient mutant Shiverer mouse, with special reference to the pattern of myelin formation by oligodendroglia. Brain Res 219(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Ip CW, Kroner A, Groh J, Huber M, Klein D, Spahn I, Diem R, Williams SK, Nave KA, Edgar JM, Martini R (2012) Neuroinflammation by cytotoxic T-lymphocytes impairs retrograde axonal transport in an oligodendrocyte mutant mouse. PLoS One 7:1–9

    Article  CAS  Google Scholar 

  • Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y-I, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  CAS  PubMed  Google Scholar 

  • Joshi DC, Zhang CL, Lin TM, Gusain A, Harris MG, Tree E, Yin Y, Wu C, Sheng ZH, Dempsey RJ, Fabry Z, Chiu SY (2015) Deletion of mitochondrial anchoring protects dysmyelinating shiverer: implications for progressive MS. J Neurosci 35(13):5293–5306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagawa T, Ikenaka K, Inoue Y, Kuriyama S, Tsujii T, Nakao J, Nakajima K, Aruga J, Okano H, Mikoshiba K (1994) Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron 13:427–442

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132(1):137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann P, Pascual JM, Anziska Y, Gooch CL, Engelstad K, Jhung S, DiMauro S, De Vivo DC (2006) Nerve conduction abnormalities in patients with MELAS and the A3243G mutation. Arch Neurol 63(5):746–748

    Article  PubMed  Google Scholar 

  • Kirkpatrick LL, Brady ST (1994) Modulation of the axonal microtubule cytoskeleton by myelinating Schwann cells. J Neurosci 14:7440–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD (2010) Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 30(19):6658–6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14(12):759–774

    Article  CAS  PubMed  Google Scholar 

  • Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Weaver D, Shirihai O, Hajnóczky G (2009) Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J 28:3074–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61(4):541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie ML, Shorer Z, Ghabriel MN, Allt G (1984) Myelinated nerve fibres and the fate of lanthanum tracer: an in vivo study. J Anat 138(Pt 1):1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macklin WB, Gardinier MV, King KD, Kampf K (1987) An AG----GG transition at a splice site in the myelin proteolipid protein gene in jimpy mice results in the removal of an exon. FEBS Lett 223(2):417–421

    Article  CAS  PubMed  Google Scholar 

  • Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131(Pt 7):1722–1735

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, Lassmann H, Turnbull DM (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132(Pt 5):1161–1174

    Article  PubMed  Google Scholar 

  • Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14:183–193

    Article  CAS  PubMed  Google Scholar 

  • Mierzwa A, Shroff S, Rosenbluth J (2011) Permeability of the paranodal junction of myelinated nerve fibers. J Neurosci 30(47):15962–15968

    Article  CAS  Google Scholar 

  • Misgeld T, Schwarz TL (2017) Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96(3):651–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriguchi A, Ikenaka K, Furuichi T, Okano H, Iwasaki Y, Mikoshiba K (1987) The fifth exon of the myelin proteolipid protein-coding gene is not utilized in the brain of jimpy mutant mice. Gene 55(2–3):333–337

    Article  CAS  PubMed  Google Scholar 

  • Morris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104(Pt 3):917–927

    PubMed  Google Scholar 

  • Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131(5):1315–1326

    Article  CAS  PubMed  Google Scholar 

  • Mutsaers SE, Carroll WM (1998) Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve. Acta Neuropathol 96(2):139–143

    Article  CAS  PubMed  Google Scholar 

  • Nave KA (2010a) Myelination and support of axonal integrity by glia. Nature 468(7321):244–252

    Article  CAS  PubMed  Google Scholar 

  • Nave KA (2010b) Myelination and the trophic support of long axons. Nat Rev Neurosci 11(4):275–283

    Article  CAS  PubMed  Google Scholar 

  • Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  CAS  PubMed  Google Scholar 

  • Nave K, Lai C, Bloom FE, Milner RJ (1986) Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci U S A 83:9264–9268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen T, Mehta NR, Conant K, Kim KJ, Jones M, Calabresi PA, Melli G, Hoke A, Schnaar RL, Ming GL, Song H, Keswani SC, Griffin JW (2009) Axonal protective effects of the myelin-associated glycoprotein. J Neurosci 29(3):630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HB, Thai TQ, Saitoh S, Wu B, Saitoh Y, Shimo S, Fujitani H, Otobe H, Ohno N (2016) Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging. Sci Rep 6:23721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno N, Kidd GJ, Mahad D, Kiryu-Seo S, Avishai A, Komuro H, Trapp BD (2011) Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci 31(20):7249–7258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno N, Chiang H, Mahad DJ, Kidd GJ, Liu L, Ransohoff RM, Sheng ZH, Komuro H, Trapp BD (2014) Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci U S A 111(27):9953–9958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno N, Katoh M, Saitoh Y, Saitoh S, Ohno S (2015) Three-dimensional volume imaging with electron microscopy toward connectome. Microscopy (Oxf) 64(1):17–26

    Article  CAS  Google Scholar 

  • Pathak D, Sepp KJ, Hollenbeck PJ (2010) Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J Neurosci 30:8984–8992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL (2014) Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158:54–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perge JA, Koch K, Miller R, Sterling P, Balasubramanian V (2009) How the optic nerve allocates space, energy capacity, and information. J Neurosci 29(24):7917–7928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins GA, Sosinsky GE, Ghassemzadeh S, Perez A, Jones Y, Ellisman MH (2008) Electron tomographic analysis of cytoskeletal cross-bridges in the paranodal region of the node of Ranvier in peripheral nerves. J Struct Biol 161(3):469–480

    Article  CAS  PubMed  Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4(12):968–980

    Article  CAS  PubMed  Google Scholar 

  • Readhead C, Schneider A, Griffiths I, Nave KA (1994) Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage. Neuron 12:583–595

    Article  CAS  PubMed  Google Scholar 

  • Ritchie JM (1995) Physiology of axons. In: Waxman SG, Kocsis JD, Stys PK (eds) The axon: structure, function and pathophysiology. Oxford University Press, Oxford, pp 68–96

    Chapter  Google Scholar 

  • Roach A, Takahashi N, Pravtcheva D, Ruddle F, Hood L (1985) Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42(1):149–155

    Article  CAS  PubMed  Google Scholar 

  • Rosenbluth J (1980) Central myelin in the mouse mutant shiverer. J Comp Neurol 194(3):639–648

    Article  CAS  PubMed  Google Scholar 

  • Rosenbluth J (2009) Multiple functions of the paranodal junction of myelinated nerve fibers. J Neurosci Res 87(15):3250–3258

    Article  CAS  PubMed  Google Scholar 

  • Saab AS, Nave KA (2017) Myelin dynamics: protecting and shaping neuronal functions. Curr Opin Neurobiol 47:104–112

    Article  CAS  PubMed  Google Scholar 

  • Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A 105(52):20728–20733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathornsumetee S, McGavern DB, Ure DR, Rodriguez M (2000) Quantitative ultrastructural analysis of a single spinal cord demyelinated lesion predicts total lesion load, axonal loss, and neurological dysfunction in a murine model of multiple sclerosis. Am J Pathol 157(4):1365–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saugier-Veber P, Munnich A, Bonneau D, Rozet JM, Le Merrer M, Gil R, Boespflug-Tanguy O (1994) X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat Genet 6:257–262

    Article  CAS  PubMed  Google Scholar 

  • Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125(Pt 9):2095–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5(6)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheng ZH, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13(2):77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shine HD, Readhead C, Popko B, Hood L, Sidman RL (1992) Morphometric analysis of normal, mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. J Neurochem 58(1):342–349

    Article  CAS  PubMed  Google Scholar 

  • Shroff S, Mierzwa A, Scherer SS, Peles E, Arevalo JC, Chao MV, Rosenbluth J (2011) Paranodal permeability in “myelin mutants”. Glia 59(10):1447–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9(1):69–92

    Article  CAS  PubMed  Google Scholar 

  • Sorbara CD, Wagner NE, Ladwig A, Nikic I, Merkler D, Kleele T, Marinkovic P, Naumann R, Godinho L, Bareyre FM, Bishop D, Misgeld T, Kerschensteiner M (2014) Pervasive axonal transport deficits in multiple sclerosis models. Neuron 84(6):1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Sousa AD, Bhat MA (2007) Cytoskeletal transition at the paranodes: the Achilles’ heel of myelinated axons. Neuron Glia Biol 3(2):169–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer PS, Thomas PK (1974) Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseases axons. J Neurocytol 3(6):763–783

    Article  CAS  PubMed  Google Scholar 

  • Sun XY, Takagishi Y, Okabe E, Chishima Y, Kanou Y, Murase S, Mizumura K, Inaba M, Komatsu Y, Hayashi Y, Peles E, Oda S, Murata Y (2009) A novel Caspr mutation causes the shambling mouse phenotype by disrupting axoglial interactions of myelinated nerves. J Neuropathol Exp Neurol 68(11):1207–1218

    Article  PubMed  Google Scholar 

  • Sun T, Qiao H, Pan PY, Chen Y, Sheng ZH (2013) Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep 4(3):413–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatar CL, Appikatla S, Da B, Paintlia AS, Singh I, Skoff RP (2010) Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain. ASN Neuro 2:219–231

    Article  CAS  Google Scholar 

  • Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24(1):44–52

    Article  CAS  PubMed  Google Scholar 

  • Thai TQ, Nguyen HB, Saitoh S, Wu B, Saitoh Y, Shimo S, Elewa YH, Ichii O, Kon Y, Takaki T, Joh K, Ohno N (2016) Rapid specimen preparation to improve the throughput of electron microscopic volume imaging for three-dimensional analyses of subcellular ultrastructures with serial block-face scanning electron microscopy. Med Mol Morphol 49(3):154–162

    Article  PubMed  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8(3):280–291

    Article  CAS  PubMed  Google Scholar 

  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Schwarz TL (2009) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136(1):163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterham HR, Koster J, van Roermund CWT, Mooyer PAW, Wanders RJA, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    Article  CAS  PubMed  Google Scholar 

  • Waxman SG (2008) Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol 4(3):159–169

    Article  CAS  PubMed  Google Scholar 

  • Waxman SG, Ja B, Duncan ID, Ransom BR (1990) Macromolecular structure of axon membrane and action potential conduction in myelin deficient and myelin deficient heterozygote rat optic nerves. J Neurocytol 19:11–28

    Article  CAS  PubMed  Google Scholar 

  • Willard HF, Riordan JR (1985) Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 230(4728):940–942

    Article  CAS  PubMed  Google Scholar 

  • Windebank AJ, Wood P, Bunge RP, Dyck PJ (1985) Myelination determines the caliber of dorsal root ganglion neurons in culture. J Neurosci 5(6):1563–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte ME, Bo L, Rodenburg RJ, Belien JA, Musters R, Hazes T, Wintjes LT, Smeitink JA, Geurts JJ, De Vries HE, van der Valk P, van Horssen J (2009) Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 219(2):193–204

    Article  PubMed  Google Scholar 

  • Yin X, Crawford TO, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18(6):1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Baek RC, Kirschner DA, Peterson A, Fujii Y, Nave KA, Macklin WB, Trapp BD (2006) Evolution of a neuroprotective function of central nervous system myelin. J Cell Biol 172(3):469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Kidd GJ, Ohno N, Perkins GA, Ellisman MH, Bastian C, Brunet S, Baltan S, Trapp BD (2016) Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J Cell Biol 215(4):531–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yool DA, Edgar JM, Montague P, Malcolm S (2000) The proteolipid protein gene and myelin disorders in man and animal models. Hum Mol Genet 9(6):987–992

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young EA, Fowler CD, Kidd GJ, Chang A, Rudick R, Fisher E, Trapp BD (2008) Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions. Ann Neurol 63(4):428–435

    Article  PubMed  Google Scholar 

  • Zambonin JL, Zhao C, Ohno N, Campbell GR, Engeham S, Ziabreva I, Schwarz N, Lee SE, Frischer JM, Turnbull DM, Trapp BD, Lassmann H, Franklin RJ, Mahad DJ (2011) Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain 134(Pt 7):1901–1913

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang CL, Ho PL, Kintner DB, Sun D, Chiu SY (2010) Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J Neurosci 30(10):3555–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36(5):449–451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-aid for Scientific Research (KAKENHI) for Young Scientists to NO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sui, Y., Nguyen, H.B., Thai, T.Q., Ikenaka, K., Ohno, N. (2019). Mitochondrial Dynamics in Physiology and Pathology of Myelinated Axons. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_10

Download citation

Publish with us

Policies and ethics