Skip to main content

Experimental Investigations to Evaluate Machining Accuracy of Ultrasonic-Assisted Milling on Thin-Walled Structures

  • Conference paper
  • First Online:
Advances in Micro and Nano Manufacturing and Surface Engineering

Abstract

Ultrasonic vibration-assisted milling (UAM) process is one of the most recent advancements in the area of milling. In axial UAM process, milling cutter is rotated and simultaneously vibrated in axial direction with high frequency and small amplitude. As observed experimentally, the superposition of axial ultrasonic vibrations in milling operation improved the performance of the process by reducing cutting forces and enhancing surface quality. This study intended to evaluate the machining accuracy of thin-walled structures milled with and without the assistance of ultrasonic vibration. Two different types of thin-walled (with straight and curved geometry) structures were machined by UAM and conventional milling to compare their machining accuracy. Accuracy of machined components was assessed following a reverse engineering technique. Experimental results indicated that the superposition of axial ultrasonic vibrations improved the machining accuracy of the typical milling process of up to 33%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, P., Zhang, S., Li, Z., Li, J.: Tool path planning and milling surface simulation for vehicle rear bumper mold. Adv. Mech. Eng. 8, 1–10 (2016). https://doi.org/10.1177/1687814016641569

    Article  Google Scholar 

  2. Ginting, A., Nouari, M.: Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. Int. J. Mach. Tools Manuf. 46, 758–768 (2006). https://doi.org/10.1016/j.ijmachtools.2005.07.035

    Article  Google Scholar 

  3. Altintaş, Y., Budak, E.: Analytical prediction of stability lobes in milling. CIRP Ann. Manuf. Technol. 44, 357–362 (1995). https://doi.org/10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  4. Quintana, G., Ciurana, J.: Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. 51, 363–376 (2011). https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  5. Wang, Z.Y., Rajurkar, K.P.: Cryogenic machining of hard-to-cut materials. Wear 239, 168–175 (2000). https://doi.org/10.1016/S0043-1648(99)00361-0

    Article  CAS  Google Scholar 

  6. Huang, X., Zhang, X., Mou, H., Zhang, X., Ding, H.: The influence of cryogenic cooling on milling stability. J. Mater. Process. Technol. 214, 3169–3178 (2014). https://doi.org/10.1016/j.jmatprotec.2014.07.023

    Article  CAS  Google Scholar 

  7. Lee, P.H., Nam, J.S., Li, C., Lee, S.W.: An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). Int. J. Precis. Eng. Manuf. 13, 331–338 (2012). https://doi.org/10.1007/s12541-012-0042-2

    Article  CAS  Google Scholar 

  8. Dhar, N.R., Ahmed, M.T., Islam, S.: An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. Int. J. Mach. Tools Manuf. 47, 748–753 (2007). https://doi.org/10.1016/j.ijmachtools.2006.09.017

    Article  Google Scholar 

  9. Brehl, D.E., Dow, T.A.: Review of vibration-assisted machining. Precis. Eng. 32, 153–172 (2008). https://doi.org/10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  10. Razfar, M.R., Sarvi, P., Zarchi, M.M.: Experimental investigation of the surface roughness in ultrasonic-assisted milling, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 225, 1615–1620 (2011). https://doi.org/10.1177/0954405411399331

    Article  CAS  Google Scholar 

  11. Shen, X.H., Zhang, J.H., Li, H., Wang, J.J., Wang, X.C.: Ultrasonic vibration-assisted milling of aluminum alloy. Int. J. Adv. Manuf. Technol. 63, 41–49 (2012). https://doi.org/10.1007/s00170-011-3882-5

    Article  Google Scholar 

  12. Abootorabi Zarchi, M.M., Razfar, M.R., Abdullah, A.: Investigation of the effect of cutting speed and vibration amplitude on cutting forces in ultrasonic-assisted milling. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 226, 1185–1191 (2012). https://doi.org/10.1177/0954405412439666

    Article  Google Scholar 

  13. Abootorabi Zarchi, M.M., Razfar, M.R., Abdullah, A.: Influence of ultrasonic vibrations on side milling of AISI 420 stainless steel. Int. J. Adv. Manuf. Technol. 66, 83–89 (2013). https://doi.org/10.1007/s00170-012-4307-9

    Article  Google Scholar 

  14. Halim, N.F.H.A., Ascroft, H., Barnes, S.: Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP). Procedia Eng. 184, 185–191 (2017). https://doi.org/10.1016/j.proeng.2017.04.084

    Article  CAS  Google Scholar 

  15. Uhlmann, E., Protz, F., Stawiszynski, B., Heidler, S.: Ultrasonic assisted milling of reinforced plastics. Procedia CIRP 66, 164–168 (2017). https://doi.org/10.1016/j.procir.2017.03.278

    Article  Google Scholar 

  16. Nath, C., Rahman, M.: Effect of machining parameters in ultrasonic vibration cutting. Int. J. Mach. Tools Manuf. 48, 965–974 (2008). https://doi.org/10.1016/j.ijmachtools.2008.01.013

    Article  Google Scholar 

  17. Ko, J.H., Tan, S.W.: Chatter marks reduction in meso-scale milling through ultrasonic vibration assistance parallel to tooling’s axis. Int. J. Precis. Eng. Manuf. 14, 17–22 (2013). https://doi.org/10.1007/s12541-013-0003-4

    Article  Google Scholar 

  18. Ko, J.H., Shaw, K.C., Chua, H.K., Lin, R.M.: Cusp error reduction under high speed micro/meso-scale milling with ultrasonic vibration assistance. 12, 15–20 (2011). https://doi.org/10.1007/s12541-011-0002-2

    Article  Google Scholar 

  19. Li, K.-M., Wang, S.-L.: Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 228, 847–855 (2013). https://doi.org/10.1177/0954405413510514

    Article  Google Scholar 

  20. Verma, G.C., Pandey, P.M.: Machining forces in ultrasonic-vibration assisted end milling. Ultrasonics 94, 350–363 (2019). https://doi.org/10.1016/j.ultras.2018.07.004

    Article  Google Scholar 

  21. Verma, G.C., Pandey, P.M., Dixit, U.S.: Modeling of static machining force in axial ultrasonic-vibration assisted milling considering acoustic softening. Int. J. Mech. Sci. 136, 1–16 (2018). https://doi.org/10.1016/j.ijmecsci.2017.11.048

    Article  Google Scholar 

  22. Budak, E.: Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity. Int. J. Mach. Tools Manuf. 46, 1478–1488 (2006). https://doi.org/10.1016/j.ijmachtools.2005.09.009

    Article  Google Scholar 

  23. Kline, W.A., DeVor, R.E., Shareef, I.A.: The prediction of surface accuracy in end milling. J. Eng. Ind. 104, 272 (1982). https://doi.org/10.1115/1.3185830

    Article  Google Scholar 

  24. Ratchev, S., Liu, S., Huang, W., Becker, A.A.: Milling error prediction and compensation in machining of low-rigidity parts. Int. J. Mach. Tools Manuf. 44, 1629–1641 (2004). https://doi.org/10.1016/j.ijmachtools.2004.06.001

    Article  Google Scholar 

  25. Verma, G.C., Pandey, P.M., Dixit, U.S.: Estimation of workpiece-temperature during ultrasonic-vibration assisted milling considering acoustic softening. Int. J. Mech. Sci. 140, 547–556 (2018). https://doi.org/10.1016/j.ijmecsci.2018.03.034

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the Engineering and Physical Sciences Research Council (UK) through grant EP/K028316/1 and Department of Science and Technology (India) through grant DST/RCUK/14-AM/2012 for project “Modeling of Advanced Materials for Simulation of Transformative Manufacturing Processes (MAST)” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Chandra Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, G.C., Pandey, P.M., Dixit, U.S. (2019). Experimental Investigations to Evaluate Machining Accuracy of Ultrasonic-Assisted Milling on Thin-Walled Structures. In: Shunmugam, M., Kanthababu, M. (eds) Advances in Micro and Nano Manufacturing and Surface Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9425-7_12

Download citation

Publish with us

Policies and ethics