Skip to main content

Pathophysiology and Genetics: BMPR2

  • Chapter
  • First Online:
Diagnosis and Treatment of Pulmonary Hypertension
  • 1189 Accesses

Abstract

Recent advances in genomic research have provided us a deeper understanding of the pathogenesis of PAH. In the early 2000s, genetic linkage analysis using large families showed rare variants in the type II receptor for the bone morphogenetic protein (BMPR2), which is a member of the transforming growth factor-beta (TGF-β) cell signaling superfamily, are the first major genetic cause of PAH. In other linkage analyses and candidate gene approaches for TGF-β superfamily signaling pathway, ALK1, ENG, SMAD4, and SMAD9 were associated with the development of hereditary and other forms of PAH, which underscores the role of this pathway in the development of occlusive pulmonary vasculopathy. The whole genome sequencing in selected families and the analysis of common variation in large PAH population provided a wider view of the underlying genetic architecture of heritable and idiopathic PAH. Unmasking the biological link between BMPR2 mutations and occlusive pulmonary vascular pathology will identify new disease mechanisms and novel therapeutic targets in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuder RM, Archer SL, Dorfmüller P, Erzurum SC, Guignabert C, Michelakis E, et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Soubrier F, Chung WK, Machado R, Grünig E, Aldred M, Geraci M, et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D13–21.

    Article  CAS  PubMed  Google Scholar 

  3. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000;67(3):737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. International PPH Consortium, KB L, RD M, MW P, JR T, JA 3rd P, JE L, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet. 2000;26(1):81–4.

    Article  Google Scholar 

  5. Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med. 2001;345(5):325–34.

    Article  CAS  PubMed  Google Scholar 

  6. Chaouat A, Coulet F, Favre C, Simonneau G, Weitzenblum E, Soubrier F, et al. Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax. 2004;59(5):446–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet. 2009;46(5):331–7.

    Article  CAS  PubMed  Google Scholar 

  8. Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, et al. Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat. 2006;27(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  9. Machado RD, Eickelberg O, Elliott CG, Geraci MW, Hanaoka M, Loyd JE, et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat. 2011;32(12):1385–9.

    Article  CAS  PubMed  Google Scholar 

  11. Chida A, Shintani M, Nakayama T, Furutani Y, Hayama E, Inai K, et al. Missense mutations of the BMPR1B (ALK6) gene in childhood idiopathic pulmonary arterial hypertension. Circ J. 2012;76(6):1501–8.

    Article  CAS  PubMed  Google Scholar 

  12. Kerstjens-Frederikse WS, Bongers EM, Roofthooft MT, Leter EM, Douwes JM, Van Dijk A, et al. TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J Med Genet. 2013;50(8):500–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Broeckel U, Robbins IM, Wheeler LA, Cogan JD, Loyd JE. Loss-of-function thrombospondin-1 mutations in familial pulmonary hypertension. Am J Phys Lung Cell Mol Phys. 2012;302(6):L541–54.

    Google Scholar 

  14. Austin ED, Ma L, LeDuc C, Berman Rosenzweig E, Borczuk A, Phillips 3rd JA, et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet. 2012;5(3):336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, et al. A novel channelopathy in pulmonary arterial hypertension. N Engl J Med. 2013;369(4):351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Best DH, Sumner KL, Austin ED, Chung WK, Brown LM, Borczuk AC, et al. EIF2AK4 mutations in pulmonary capillary hemangiomatosis. Chest. 2014;145(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  17. Eyries M, Montani D, Girerd B, Perret C, Leroy A, Lonjou C, et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet. 2014;46(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  18. Germain M, Eyries M, Montani D, Poirier O, Girerd B, Dorfmüller P, et al. Genome-wide association analysis identifies a susceptibility locus for pulmonary arterial hypertension. Nat Genet. 2013;45(5):518–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987;107(2):216–23.

    Article  CAS  PubMed  Google Scholar 

  20. Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet. 2000;37(10):741–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abdalla SA, Cymerman U, Rushlow D, Chen N, Stoeber GP, Lemire EG, et al. Novel mutations and polymorphisms in genes causing hereditary hemorrhagic telangiectasia. Hum Mutat. 2005;25(3):320–1.

    Article  PubMed  Google Scholar 

  22. Prigoda NL, Savas S, Abdalla SA, Piovesan B, Rushlow D, Vandezande K, et al. Hereditary haemorrhagic telangiectasia: mutation detection, test sensitivity and novel mutations. J Med Genet. 2006;43(9):722–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roberts KE, McElroy JJ, Wong WP, Yen E, Widlitz A, Barst RJ, et al. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J. 2004;24(3):371–4.

    Article  CAS  PubMed  Google Scholar 

  24. Runo JR, Vnencak-Jones CL, Prince M, Loyd JE, Wheeler L, Robbins IM, et al. Pulmonary veno-occlusive disease caused by an inherited mutation in bone morphogenetic protein receptor II. Am J Respir Crit Care Med. 2003;167(6):889–94.

    Article  PubMed  Google Scholar 

  25. Sztrymf B, Coulet F, Girerd B, Yaici A, Jais X, Sitbon O, et al. Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. Am J Respir Crit Care Med. 2008;177(12):1377–83.

    Article  CAS  PubMed  Google Scholar 

  26. Evans JD, Girerd B, Montani D, Wang XJ, Galiè N, Austin ED, et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respir Med. 2016;4(2):129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elliott CG, Glissmeyer EW, Havlena GT, Carlquist J, McKinney JT, Rich S, et al. Relationship of BMPR2 mutations to vasoreactivity in pulmonary arterial hypertension. Circulation. 2006;113(21):2509–15.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenzweig EB, Morse JH, Knowles JA, Chada KK, Khan AM, Roberts KE, et al. Clinical implications of determining BMPR2 mutation status in a large cohort of children and adults with pulmonary arterial hypertension. J Heart Lung Transplant. 2008;27(6):668–74.

    Article  PubMed  Google Scholar 

  29. Girerd B, Montani D, Coulet F, Sztrymf B, Yaici A, Jaïs X, et al. Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am J Respir Crit Care Med. 2010;181(8):851–61.

    Article  CAS  PubMed  Google Scholar 

  30. Larkin EK, Newman JH, Austin ED, Hemnes AR, Wheeler L, Robbins IM, et al. Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(9):892–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Loyd JE. Genetics and gene expression in pulmonary hypertension. Chest. 2002;121(3 Suppl):46S–50S.

    Article  CAS  PubMed  Google Scholar 

  32. Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, et al. Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J. 2009;34(5):1093–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. West J, Cogan J, Geraci M, Robinson L, Newman J, Phillips JA, et al. Gene expression in BMPR2 mutation carriers with and without evidence of pulmonary arterial hypertension suggests pathways relevant to disease penetrance. BMC Med Genet. 2008;1:45.

    Google Scholar 

  34. Hamid R, Cogan JD, Hedges LK, Austin E, Phillips 3rd JA, Newman JH, et al. Penetrance of pulmonary arterial hypertension is modulated by the expression of normal BMPR2 allele. Hum Mutat. 2009;30(4):649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cogan J, Austin E, Hedges L, Womack B, West J, Loyd J, et al. Role of BMPR2 alternative splicing in heritable pulmonary arterial hypertension penetrance. Circulation. 2012;126(15):1907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Machado RD, James V, Southwood M, Harrison RE, Atkinson C, Stewart S, et al. Investigation of second genetic hits at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension. Circulation. 2005;111(5):607–13.

    Article  CAS  PubMed  Google Scholar 

  37. Aldred MA, Comhair SA, Varella-Garcia M, Asosingh K, Xu W, Noon GP, et al. Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;182(9):1153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Girerd B, Coulet F, Jaïs X, Eyries M, Van Der Bruggen C, De Man F, et al. Characteristics of pulmonary arterial hypertension in affected carriers of a mutation located in the cytoplasmic tail of bone morphogenetic protein receptor type 2. Chest. 2015;147(5):1385–94.

    Article  PubMed  Google Scholar 

  39. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122:156–63.

    Article  PubMed  Google Scholar 

  40. Ma L, Chung WK. The genetic basis of pulmonary arterial hypertension. Hum Genet. 2014;133(5):471–9.

    Article  CAS  PubMed  Google Scholar 

  41. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res. 2006;98(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  42. Burton VJ, Ciuclan LI, Holmes AM, Rodman DM, Walker C, Budd DC. Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function. Blood. 2011;117(1):333–41.

    Article  CAS  PubMed  Google Scholar 

  43. Burton VJ, Holmes AM, Ciuclan LI, Robinson A, Roger JS, Jarai G, et al. Attenuation of leukocyte recruitment via CXCR1/2 inhibition stops the progression of PAH in mice with genetic ablation of endothelial BMPR-II. Blood. 2011;118(17):4750–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sawada H, Saito T, Nickel NP, Alastalo TP, Glotzbach JP, Chan R, Haghighat L, Fuchs G, Januszyk M, Cao A, Lai YJ, Perez Vde J, Kim YM, Wang L, et al. Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. J Exp Med. 2014;211(2):263–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang D, Prakash J, Nguyen P, Davis-Dusenbery BN, Hill NS, Layne MD, et al. Bone morphogenetic protein signaling in vascular disease: anti-inflammatory action through myocardin-related transcription factor A. J Biol Chem. 2012;287(33):28067–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davies RJ, Holmes AM, Deighton J, Long L, Yang X, Barker L, et al. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: role of proinflammatory cytokines. Am J Phys Lung Cell Mol Phys. 2012;302(6):L604–15.

    CAS  Google Scholar 

  47. West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, et al. Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res. 2004;94(8):1109–14.

    Article  CAS  PubMed  Google Scholar 

  48. Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, et al. Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation. 2008;118(7):722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Long L, Ormiston ML, Yang X, Southwood M, Gräf S, Machado RD, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015;21(7):777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Péchoux C, Bogaard HJ, et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation. 2015;131(11):1006–18.

    Article  CAS  PubMed  Google Scholar 

  51. Reynolds AM, Holmes MD, Danilov SM, Reynolds PN. Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur Respir J. 2012;39(2):329–43.

    Article  CAS  PubMed  Google Scholar 

  52. Reynolds AM, Xia W, Holmes MD, Hodge SJ, Danilov S, Curiel DT, et al. Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension. Am J Phys Lung Cell Mol Phys. 2007;292(5):L1182–92.

    CAS  Google Scholar 

  53. Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Sawada H, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013;123(8):3600–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Star GP, Giovinazzo M, Langleben D. ALK2 and BMPR2 knockdown and endothelin-1 production by pulmonary microvascular endothelial cells. Microvasc Res. 2013;85:46–53.

    Article  CAS  PubMed  Google Scholar 

  55. Yang J, Li X, Al-Lamki RS, Wu C, Weiss A, Berk J, et al. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2013;33(1):34–42.

    Article  PubMed  Google Scholar 

  56. Yang J, Li X, Al-Lamki RS, Southwood M, Zhao J, Lever AM, et al. Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo. Circ Res. 2010;107(2):252–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihide Mitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mitani, Y. (2017). Pathophysiology and Genetics: BMPR2. In: Fukumoto, Y. (eds) Diagnosis and Treatment of Pulmonary Hypertension. Springer, Singapore. https://doi.org/10.1007/978-981-287-840-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-840-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-839-7

  • Online ISBN: 978-981-287-840-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics