Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 466 Accesses

Abstract

The neutrino events in INGRID, ND280 and Super-K are predicted with the Monte Carlo simulations in three steps; a neutrino beam simulation, a neutrino interaction simulation, and detector simulations. This chapter describes details of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NEUT was originally developed to estimate the neutrino background for the proton decay search in Kamiokande.

  2. 2.

    The Fermi gas model treats the nucleus as an ideal gas composed of weakly interacting fermions. See Appendix D for details.

  3. 3.

    Such intra-nuclear interactions are often referred to as the final state interactions (FSI) in the neutrino interaction community.

  4. 4.

    The methods of estimating the light yield and hit detection efficiency are described in Appendix B.

  5. 5.

    The ND280 detector simulation was developed independently of INGRID.

References

  1. K. Abe et al. (T2K Collaboration), Phys. Rev. D 87, 012001 (2013)

    Google Scholar 

  2. A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, CERN-2005-010, SLAC-R-773 and INFN-TC-05-011 (2005)

    Google Scholar 

  3. G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007)

    Article  ADS  Google Scholar 

  4. R. Brun et al., CERN Program Library Long Write-up W5013 (1993)

    Google Scholar 

  5. C. Zeitnitz, T.A. Gabriel, Nucl. Instrum. Methods A 349, 106 (1994)

    Article  ADS  Google Scholar 

  6. N. Abgrall et al. (NA61/SHINE Collaboration), Phys. Rev. C 84, 034604 (2011)

    Google Scholar 

  7. N. Abgrall et al. (NA61/SHINE Collaboration), Phys. Rev. C 85, 035210 (2012)

    Google Scholar 

  8. T. Eichten et al., Nucl. Phys. B 44, 333 (1972)

    Article  ADS  Google Scholar 

  9. J.V. Allaby et al., Report No. CERN-70-12 (1970)

    Google Scholar 

  10. Y. Hayato, Nucl. Phys. Proc. Suppl. B 112, 171 (2002)

    Article  ADS  Google Scholar 

  11. Y. Hayato, Acta Phys. Polon. B 40, 2477 (2009)

    ADS  Google Scholar 

  12. G. Mitsuka, A.I.P. Conf, Proc. 981, 262 (2008)

    Google Scholar 

  13. C. Andreopoulos et al., Nucl. Instrum. Methods A 614, 87 (2010)

    Article  ADS  Google Scholar 

  14. D. Casper, Nucl. Phys. Proc. Suppl. 112, 161 (2002)

    Article  ADS  Google Scholar 

  15. A. Gazizov, M.P. Kowalski, Comput. Phys. Commun. 172, 203 (2005)

    Article  ADS  Google Scholar 

  16. O. Buss et al., Phys. Rept. 512, 1 (2012)

    Article  ADS  Google Scholar 

  17. C. Juszczak, Acta Phys. Polon. B 40, 2507 (2009)

    ADS  Google Scholar 

  18. C.H. Llewellyn Smith, Phys. Rept. 3, 261 (1972)

    Google Scholar 

  19. R.G. Sachs, Phys. Rev. 126, 2256 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. D. Dubbers et al., Europhys. Lett. 11, 195 (1990)

    Article  ADS  Google Scholar 

  21. J. Liu et al. (UCNA Collaboration), Phys. Rev. Lett. 105, 181803 (2010)

    Google Scholar 

  22. D. Mund et al., Phys. Rev. Lett. 110, 172502 (2012)

    Article  ADS  Google Scholar 

  23. R. Gran et al., Phys. Rev. D 74, 052002 (2006)

    Article  ADS  Google Scholar 

  24. A.A. Aguilar-Arevalo et al., Phys. Rev. Lett. 100, 032301 (2008)

    Article  ADS  Google Scholar 

  25. L.A. Ahrens et al., Phys. Rev. Lett. 56, 1107 (1986)

    Article  ADS  Google Scholar 

  26. C.H. Albright, C. Quigg, R.E. Shrock, J. Smith, Phys. Rev. D 14, 1780 (1976)

    Article  ADS  Google Scholar 

  27. R.A. Smith, E.J. Moniz, Nucl. Phys. B 43, 605 (1972)

    Article  ADS  Google Scholar 

  28. D. Rein, L.M. Sehgal, Ann. Phys. 133, 79 (1981)

    Article  ADS  Google Scholar 

  29. G. Breit, E. Wigner, Phys. Rev. 49, 519 (1936)

    Article  MATH  ADS  Google Scholar 

  30. R.P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D 3, 2706 (1971)

    Article  ADS  Google Scholar 

  31. C.H. Berger, L.M. Sehgal, Phys. Rev. D 76, 113004 (2007)

    Article  ADS  Google Scholar 

  32. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Mod. Phys. Lett. A 19, 2815 (2004)

    Article  MATH  ADS  Google Scholar 

  33. D. Rein, Zeit. Phys. C 35, 43 (1987)

    Article  ADS  Google Scholar 

  34. T. Kitagaki et al., Phys. Rev. D 34, 2554 (1986)

    Article  ADS  Google Scholar 

  35. S.K. Singh, M.J. Vicente-Vacas, E. Oset, Phys. Lett. B 416, 23 (1998)

    Article  ADS  Google Scholar 

  36. D. Rein, L.M. Sehgal, Nucl. Phys. B 223, 29 (1983)

    Article  ADS  Google Scholar 

  37. D. Rein, L.M. Sehgal, Nucl. Phys. B 657, 207 (2007)

    Google Scholar 

  38. S.L. Adler, Phys. Rev. 135, 963 (1964)

    Article  ADS  Google Scholar 

  39. J.J. Sakurai, Ann. Phys. 11, 1 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  40. V. Flaminino et al., CERN-HERA 79-01 (1979)

    Google Scholar 

  41. M. Glück, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)

    Article  ADS  Google Scholar 

  42. A. Bodek, U.K. Yang, A.I.P. Conf, Proc. 670, 110 (2003)

    Google Scholar 

  43. A. Bodek, I. Park, U.K. Yang, Nucl. Phys. B Proc. Suppl. 139, 113 (2005)

    Google Scholar 

  44. M. Nakahata et al., J. Phys. Soc. Jpn. 55, 3786 (1986)

    Article  ADS  Google Scholar 

  45. M. Derrick et al., Phys. Rev. D 17, 1 (1978)

    Article  ADS  Google Scholar 

  46. Z. Koba, H.B. Nielsen, P. Olesen, Nucl. Phys. B 40, 317 (1972)

    Article  ADS  Google Scholar 

  47. T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  48. P. Musset, J.P. Vialle, Phys. Rept. 39, 1 (1978)

    Article  ADS  Google Scholar 

  49. J.E. Kim, P. Langacker, M. Levine, H.H. Williams, Rev. Mod. Phys. 53, 211 (1981)

    Article  ADS  Google Scholar 

  50. A. Bodek, J.L. Ritchie, Phys. Rev. D 24, 1400 (1981)

    Article  ADS  Google Scholar 

  51. T. Yang et al., Eur. Phys. J. C 63, 1 (2009)

    Article  ADS  Google Scholar 

  52. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Google Scholar 

  53. N. Metropolis et al., Phys. Rev. 110, 185 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  54. R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577 (1954)

    Article  ADS  Google Scholar 

  55. C.W. De Jager, H. De Vries, C. De Vries, Atom. Data Nucl. Data Tabl. 14, 479 (1974)

    Article  ADS  Google Scholar 

  56. L.L. Salcedo et al., Nucl. Phys. A 484, 557 (1988)

    Article  ADS  Google Scholar 

  57. D. Ashery et al., Phys. Rev. C 23, 2173 (1981)

    Article  ADS  Google Scholar 

  58. G. Rowe, M. Salomon, R.H. Landau, Phys. Rev. C 18, 584 (1978)

    Google Scholar 

  59. H.W. Bertini, Phys. Rev. C 6, 631 (1972)

    Article  ADS  Google Scholar 

  60. S.J. Lindenbaum, R.M. Sternheimer, Phys. Rev. 105, 1874 (1957)

    Article  MATH  ADS  Google Scholar 

  61. A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 81, 092005 (2010)

    Google Scholar 

  62. A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 83, 052009 (2011)

    Google Scholar 

  63. A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 83, 052007 (2011)

    Google Scholar 

  64. A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 81, 013005 (2010)

    Google Scholar 

  65. E.J. Moniz et al., Phys. Rev. Lett. 26, 445 (1971)

    Article  ADS  Google Scholar 

  66. O. Benhar, A. Fabrocini, S. Fantoni, I. Sick, Nucl. Phys. A 579, 493 (1994)

    Article  ADS  Google Scholar 

  67. O. Benhar, N. Farina, H. Nakamura, M. Sakuda, R. Seki, Phys. Rev. D 72, 053005 (2005)

    Article  ADS  Google Scholar 

  68. H. Nakamura, T. Nasu, M. Sakuda, O. Benhar, Phys. Rev. C 76, 065208 (2007)

    Article  ADS  Google Scholar 

  69. V. Lyubushkin et al. (NOMAD Collaboration), Eur. Phys. J. C 63, 355 (2009)

    Google Scholar 

  70. M. Hasegawa et al. (K2K Collaboration), Phys. Rev. Lett. 95, 252301 (2005)

    Google Scholar 

  71. K. Hiraide et al. (SciBooNE Collaboration), Phys. Rev. D 78, 112004 (2008)

    Google Scholar 

  72. Y. Kurimoto et al. (SciBooNE Collaboration), Phys. Rev. D 81, 111102 (2010)

    Google Scholar 

  73. P. Adamson et al. (MINOS Collaboration), Phys. Rev. D 81, 072002 (2010)

    Google Scholar 

  74. M. Day, K.S. McFarland, Phys. Rev. D 86, 053003 (2012)

    Article  ADS  Google Scholar 

  75. I. Navon et al., Phys. Rev. C 28, 2548 (1983)

    Article  ADS  Google Scholar 

  76. E. Bellotti et al., Nuovo Cim. A 18, 75 (1973)

    Article  ADS  Google Scholar 

  77. E. Bellotti et al., Nuovo Cim. A 14, 567 (1973)

    Article  ADS  Google Scholar 

  78. D. Ashery et al., Phys. Rev. C 30, 946 (1984)

    Article  ADS  Google Scholar 

  79. I. Navon et al., Phys. Rev. Lett. 42, 1465 (1979)

    Article  ADS  Google Scholar 

  80. M.K. Jones et al., Phys. Rev. C 48, 2800 (1993)

    Article  ADS  Google Scholar 

  81. F. Binon et al., Nucl. Phys. B 17, 168 (1970)

    Article  ADS  Google Scholar 

  82. A. Saunders et al., Phys. Rev. C 53, 1745 (1996)

    Article  ADS  Google Scholar 

  83. S.M. Levenson et al., Phys. Rev. C 28, 326 (1983)

    Article  ADS  Google Scholar 

  84. H. Hilscher et al., Nucl. Phys. A 158, 602 (1970)

    Article  ADS  Google Scholar 

  85. R.H. Miller et al., Nuovo Cim. V 1, 882 (1957)

    Article  Google Scholar 

  86. K.V. Alanakian et al., Phys. Atom. Nucl. 61, 207 (1998)

    ADS  Google Scholar 

  87. S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. B 506, 250 (2003)

    Google Scholar 

  88. J. Apostolakis et al., J. Phys. Conf. Ser. 160, 012073 (2009)

    Article  ADS  Google Scholar 

  89. J. Birks, Proc. Phys. Soc. A 64, 874 (1951)

    Article  ADS  Google Scholar 

  90. J. Birks, Theory and Practice of Scintillation Counting. Pergamon Press (1964)

    Google Scholar 

  91. K. Abe et al. (T2K Collaboration), Nucl. Instrum. Methods A 659, 106 (2011)

    Google Scholar 

  92. C. Giganti, Ph.D. thesis, L’Universite Paris-Sud (2010)

    Google Scholar 

  93. I. Thormahlen, J. Straub, U. Grigull, J. Phys. Chem. Ref. Data 14, 933 (1985)

    Article  ADS  Google Scholar 

  94. K. Abe et al. (Super-Kamiokande Collaboration), Nucl. Instrum. Methods A 737, 253 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kikawa, T. (2016). Neutrino Event Prediction. In: Measurement of Neutrino Interactions and Three Flavor Neutrino Oscillations in the T2K Experiment. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-287-715-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-715-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-714-7

  • Online ISBN: 978-981-287-715-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics