Skip to main content

Insight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals

  • Chapter
  • First Online:
Reactive Oxygen Species

Abstract

Stress disrupts many physiological processes in plants by causing an increase in reactive oxygen species (ROS), which leads to serious damage to DNA, RNA, lipids, and proteins. Meanwhile, the generated ROS play an important role as signaling molecules, inducing a metabolic cascade that allows plants to tolerate stress. Plant development and stress adaptation are known to be monitored by phytohormones by regulating ROS levels to modulate signaling and prevent oxidative stress. Strigolactones (SLs) and abscisic acid (ABA) are carotenoid-derived hormones that play an active role in stress responses. A strong relationship was discovered between ABA and SLs biosynthesis. ABA was revealed to be involved in the regulation of SL production, and max2 mutants (MAX2 is an F-box protein required for SL signaling) were found to be more sensitive to osmotic stress, with an impaired ABA response. The cross talk between SL and ABA signaling during stress is of major importance. SL signaling has been linked to ROS responses during osmotic stress and nutrient deprivation. Similarly, in water-stressed plants, ABA signals promote stomatal closure via ROS generated by respiratory burst oxidases (RBOH). This chapter summarizes the current understanding of how ROS production, detoxification, and signaling interact with SLs and ABA action to regulate plant growth and metabolism under acute stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A 111(50):18084–18089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci U S A 108:20242–20247. https://doi.org/10.1073/pnas.1111902108

    Article  PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio GA, Fernandez MA et al (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931–941. https://doi.org/10.1104/pp.112.208678

    Article  CAS  PubMed  Google Scholar 

  • Antoniou C, Savvides A, Christou A, Fotopoulos V (2016) Unravelling chemical priming machinery in plants: the role of reactive oxygen–nitrogen–sulfur species in abiotic stress tolerance enhancement. Curr Opin Plant Biol 33:101–107

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Kameoka H, Kyozuka J (2012) Strigolactone positively controls crown root elongation in rice. J Plant Growth Regul 31:165–172. https://doi.org/10.1007/s00344-011-9228-6

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA (2019) An update on the signals controlling shoot branching. Trends Plant Sci 24(3):220–236

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 67:67–83

    Article  Google Scholar 

  • Besserer A, Becard G, Roux C, Sejalon-Delmas N (2009) Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signal Behav 4:75–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247

    Article  CAS  Google Scholar 

  • Beveridge CA, Kyozuka J (2009) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13(1):34–39

    Article  PubMed  Google Scholar 

  • Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39

    Article  CAS  PubMed  Google Scholar 

  • Blake SN, Barry KM, Gill WM, Reid JB, Foo E (2016) The role of strigolactones and ethylene in disease caused by Pythium irregulare. Mol Plant Pathol 17:680–690. https://doi.org/10.1111/mpp.12320

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138(4):447–462

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:1–11

    Article  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202. https://doi.org/10.1111/nph.12234

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14(14):1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull CGN, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:7

    Article  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  CAS  PubMed  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U et al (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, Frickey T, Akiyama K et al (2016) LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 113:6301–6306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA- induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. https://doi.org/10.1111/nph.14976

  • Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z et al (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–439. https://doi.org/10.1104/pp.113.226837

    Article  CAS  PubMed  Google Scholar 

  • Cardoso C, Zhang Y, Jamil M, Hepworth J, Charnikhova T, Dimkpa SO, Meharg C, Wright MH, Liu J, Meng X, Wang Y, Li J, McCouch SR, Leyser O, Price AH, Bouwmeester HJ, Ruyter-Spira C (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci U S A 111(6):2379–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman JM, Muhlemann JK, Gayomba SR, Muday GK (2019) RBOHDependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32:370–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi C, Xu X, Wang M et al (2021) Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Hortic Res 8:237. https://doi.org/10.1038/s41438-021-00668-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Cooper JW et al (2018) Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ 41:1298–1310

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. https://doi.org/10.1146/annurev-arplant-042809-112122

    Article  CAS  PubMed  Google Scholar 

  • De Saint Germain A, Ligerot Y, Dun EA, Pillot JP, Ross JJ, Beveridge CA et al (2013) Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol 163:1012–1025. https://doi.org/10.1104/pp.113.220541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704

    Article  PubMed  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  CAS  PubMed  Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234:419–427

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, de-Saint GA, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, de-Saint GA, Rameau C, Beveridge CA (2013) Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol Plant 6:128–140

    Article  CAS  PubMed  Google Scholar 

  • Faizan M, Faraz A, Sami F, Siddiqui H, Yusuf M, Gruszka D, Hayat S (2020) Role of strigolactones: signalling and crosstalk with other phytohormones. Open Life Sci 15:217–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Z, Ji Y, Hu J, Guo R, Sun S, Wang X (2020) Strigolactones and brassinosteroids antagonistically regulate the stability of the D53–OsBZR1 complex to determine FC1 expression in rice tillering. Mol Plant 13:586–597. https://doi.org/10.1016/j.molp.2019.12.005

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Aparicio M, Yoneyama K, Rubiales D (2011) The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res 21:55–61

    Article  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415. https://doi.org/10.1146/annurev.arplant.59.032607.092740

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo E, Blake SN, Fisher BJ, Smith JA, Reid JB (2016) The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum. Planta 243:1387–1396. https://doi.org/10.1007/s00425-015-2449-3

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P (eds) Causes of photooxidative stresses and amelioration of defense systems in plants. CRC Press, Boca Raton, Fla, pp 1–42

    Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S, Mengiste T, Ejeta G (2017) Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes striga resistance. Proc Natl Acad Sci USA 114:4471–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269

    Article  CAS  PubMed  Google Scholar 

  • Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci 111(2):851–856. https://doi.org/10.1073/pnas.1322135111

    Article  CAS  PubMed  Google Scholar 

  • Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD et al (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22(21):2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/ or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Hu QN, Zhang SX, Huang BR (2019) Strigolactones promote leaf elongation in tall fescue through upregulation of cell cycle genes and downregulation of auxin transport genes in tall fescue under different temperature regimes. Int J Mol Sci 20:1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Im JH, Lee H, Kim J, Kim HB, An CS (2012) Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress. Mol Cells 34:271–278. https://doi.org/10.1007/s10059-012-0092-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail A, Riaz M, Akhtar S, Ismail T, Amir M, Zafar-ul-Hye M (2014) Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters. Food Addit Contam B 7:213–219. https://doi.org/10.1080/19393210.2014.888783

    Article  CAS  Google Scholar 

  • Ito S, Ito K, Abeta N, Takahashi R, Sasaki Y, Yajima S (2016) Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition. Plant Signal Behav 11:e1126031. https://doi.org/10.1080/15592324.2015.1126031

    Article  CAS  PubMed  Google Scholar 

  • Jain JA, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized pi-deficiency induced modulation of different traits of root system architecture in arabidopsis. Plant Physiol 144:232–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jannat R, Uraji MMM et al (2011) Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. J Plant Physiol 168(16):1919–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang MY, Zhang JH (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Jibran R, Hunter DA, Dijkwel PP (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82:547–561

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126(3):1055–1060

    Article  Google Scholar 

  • Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C et al (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kapulnik Y, Koltai H (2014) Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol 166(2):560–569. https://doi.org/10.1104/pp.114.244939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khokon MA, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2010) Yeast elicitor-induced stomatal closure and peroxidase- mediated ROS production in Arabidopsis. Plant Cell Physiol 51:1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Kim HI, Xie X, Kim HS, Chun JC, Yoneyama K, Nomura T, Takeuchi Y, Yoneyama K (2010a) Structure-activity relationship of naturally occurring strigolactones in Orobanche minor seed germination stimulation. J Pestic Sci 35:344–347

    Article  CAS  Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010b) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591. https://doi.org/10.1146/annurevarplant-042809-112226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisugi T, Xie X, Kim HI et al (2013) Strigone, isolation and identification as a natural strigolactone from Houttuynia cordata. Phytochemistry 87:60–64

    Article  CAS  PubMed  Google Scholar 

  • Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210. https://doi.org/10.1093/jxb/erq151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M et al (2012) The tomato CAROT- ENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547

    Article  CAS  PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  CAS  PubMed  Google Scholar 

  • Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjarvi J, Mittler R (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci 24:25–37

    Article  CAS  PubMed  Google Scholar 

  • Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549

    Article  CAS  PubMed  Google Scholar 

  • Koltai H (2014) Receptors, repressors, PINs: a playground for strigolactone signaling. Trends Plant Sci 19:727–733. https://doi.org/10.1016/j.tplants.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  • Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech V et al (2011) Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168:1993–1996. https://doi.org/10.1016/j.jplph.2011.05.022

    Article  CAS  PubMed  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel D, Weininger S et al (2009) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136

    Article  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136. https://doi.org/10.1007/s00344-009-9122-7

    Article  CAS  Google Scholar 

  • Kong CC, Ren CG, Li RZ, Xie ZH, Wang JP (2017) Hydrogen peroxide and strigolactones signaling are involved in alleviation of salt stress induced by arbuscular mycorrhizal fungus in sesbania cannabina seedlings. J Plant Growth Regul 36(3):734–742. https://doi.org/10.1007/s00344-017-9675-9

    Article  CAS  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–U135

    Article  Google Scholar 

  • Kumar K, Rao KP, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem 46(10):891–897. https://doi.org/10.1016/j.plaphy.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117:221–234

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers J, van der Meer T, Testerink C (2020) How plants sense and respond to stressful environments. Plant Physiol 182:1624–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Lee MH, Kim JI, Kim SY (2015) Arabidopsis putative MAP kinase kinase kinases Raf10 and Raf11 are positive regulators of seed dormancy and ABA response. Plant Cell Physiol 56:84–97

    Article  CAS  PubMed  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wang W, Li G, Guo K, Harvey P, Chen Q, Zhao Z, Wei Y, Li J, Yang H (2016) MAPK-mediated regulation of growth and essential oil composition in a salt- tolerant peppermint (Mentha piperita L.) under NaCl stress. Protoplasma 253:1541–1556. https://doi.org/10.1007/s00709-015-0915-1

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 5:115–136

    Article  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21(5):1512–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302–1305. https://doi.org/10.1126/science.1146281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Lovisolo C, Schubert A, Cardinale F (2013) Signaling role of strigolactones at the interface between plants, (micro)organisms, and a changing environment. J Plant Interact 8(1):17–33. https://doi.org/10.1080/17429145.2012.750692

    Article  CAS  Google Scholar 

  • Liu X et al (2020) Carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant 13:1784–1801

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ et al (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354. https://doi.org/10.1111/j.1469-8137.2010.03291.x

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Yu H, Li Q, Chai L, Jiang WJ (2019) Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Front Plant Sci 10:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv S, Zhang YH, Li C, Liu ZJ, Yang N, Pan LX, Wu JB, Wang JJ, Yang JW, Lv YT, Zhang YT, Jiang WQ, She XP, Wang GD (2018) Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid- independent manner. New Phytol 217(1):290–304. https://doi.org/10.1111/nph.14813

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Hu C, Wan L, Hu Q, Xiong J, Zhang C (2017) Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene. Front Plant Sci 8:1671. https://doi.org/10.3389/fpls.2017.01671

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P et al (2022) Reactive oxygen species in plants: from source to sink. Antioxidants 11(2):225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Marzec M (2016) Strigolactones as part of the plant defence system. Trends Plant Sci 16:30121–30122. https://doi.org/10.1016/j.tplants.2016.08.010

    Article  CAS  Google Scholar 

  • Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB et al (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–1341. https://doi.org/10.1104/pp.112.202358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M (2010) The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63:484–498. https://doi.org/10.1111/j.1365-313X.2010.04257.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignolet-Spruyt L, Xu E, Idanheimo N, Hoeberichts FA, Muhlenbock P, Brosche M, Van Breusegem F, Kangasjarvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    Article  CAS  PubMed  Google Scholar 

  • Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51:1127–1135. https://doi.org/10.1093/pcp/pcq083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M (2013) Structure and function of abscisic acid receptors. Trends Plant Sci 18:259–266. https://doi.org/10.1016/j.tplants.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP (2018) Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant Cell Environ 41(10):2227–2243

    Article  CAS  PubMed  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5(5):388–395

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QTC, Lee SJ, Choi SW, Na YJ, Song MR, Hoang QTN, Sim SY, Kim MS, Kim JI, Soh MS, Kim SY (2019) Arabidopsis Raf-like kinase Raf10 is a regulatory component of core ABA signaling. Mol Cells 42:646–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilson SE, Assmann SM (2007) The control of transpiration. Insights from arabidopsis. Plant Physiol 143:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12

    Article  CAS  PubMed  Google Scholar 

  • Nolan TM, Vukasinovic N, Liu D, Russinova E, Yin Y (2020) Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32:298–318

    Article  Google Scholar 

  • Nooden LD (1988) The phenomena of senescence and aging. In: Leopold AC, Nooden LD (eds) Senescence and aging in plants. Academic Press, San Diego, CA, pp 1–50

    Google Scholar 

  • Noodén LD (2004) Introduction. In: Noodén LD (ed) Plant cell death processes. Academic Press, London, pp 1–18

    Google Scholar 

  • Ouyang X, Li J, Li G, Li B, Chen B, Shen H et al (2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23:2514–2535. https://doi.org/10.1105/tpc.111.085126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endo-symbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pel ZM, Murata Y, Benning G et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(6797):731–734

    Article  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  Google Scholar 

  • Piisilä M, Keceli MA, Brader G, Jakobson L, Jõesaar I, Sipari N et al (2015) F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol 15:53. https://doi.org/10.1186/s12870-015-0434-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postliglione AE, and Gloria KM (2022) Abscisic Acid Drives Stomatal Closure through Increases in Hydrogen Peroxide in Distinct Subcellular Compartments Including Mitochondria. bioRxiv

    Google Scholar 

  • Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim TH, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150:1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de-Ruijter N et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  CAS  PubMed  Google Scholar 

  • Sachs T, Thimann KV (1967) The role of auxins and cytokinins in the release of buds from apical dominance. Am J Bot 45:136–144

    Article  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant

    Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F et al (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588. https://doi.org/10.1111/j.1365-313X.2009.03981.x

    Article  CAS  PubMed  Google Scholar 

  • Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl

    Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1144

    Article  CAS  Google Scholar 

  • Sharifi P, Bidabadi SS (2020) Strigolactone could enhances gas-exchange through augmented antioxidant defense system in Salvia nemorosa L. plants subjected to saline conditions stress. Ind Crops Prod 151:112460

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26(11):2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012

    Google Scholar 

  • Shi CY, Qi C, Ren HY, Huang AX, Hei SM, She XP (2015) Ethylene mediates brassinosteroid- induced stomatal closure via ga protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. Plant J 82:280–301

    Article  CAS  PubMed  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 1:e1001474. https://doi.org/10.1371/journal.pbio.1001474

    Article  CAS  Google Scholar 

  • Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC (2007) Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol 143:697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986

    Article  CAS  PubMed  Google Scholar 

  • Song X, Lu Z, Yu H, Shao G, Xiong J, Meng X (2017) IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 27:1128–1141. https://doi.org/10.1038/cr.2017.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Carcıa-Garrido JM, Ocampo JA et al (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A et al (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159. https://doi.org/10.1105/tpc.15.00562. Search in Google Scholar

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul:1–16

    Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    Article  CAS  PubMed  Google Scholar 

  • Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K (2015) Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. J Exp Bot 66:5123–5134. https://doi.org/10.1093/jxb/erv309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto Y, Ali AM, Yabuta S, Kinoshita H, Inanaga S, Itai A (2003) Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiol Plant 119:137–145

    Article  CAS  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X et al (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci U S A 94(22):12235–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thimann KV, Skoog F (1934) On the inhibition of bud development and other functions of growth substances in Vicia faba. Proc R Soc London Ser B 114:317–339

    Article  CAS  Google Scholar 

  • Torres-Vera R, Garcia JM, Pozo MJ, Lopez-Raez JA (2014) Do strigolactones contribute to plant defense? Mol Plant Pathol 15:211–216. https://doi.org/10.1111/mpp.12074

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, McCourt P (2009) Strigolactones: a new hormone with a past. Curr Opin Plant Biol 12:556–561

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y et al (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 169:138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda- Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200. https://doi.org/10.1038/nature07272

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, YamaguchiShinozaki K et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106:17588–17593. https://doi.org/10.1073/pnas.0907095106

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6:rs8

    Article  PubMed  Google Scholar 

  • Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F (2016) Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol 212(4):954–963. https://doi.org/10.1111/nph.14190. Epub 2016 Sep 26. PMID: 27716937

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang B, Yu H et al (2020) Transcriptional regulation of strigolactone signaling in Arabidopsis. Nature 583:272–281

    Article  Google Scholar 

  • Wang P, Xue L, Batelli G, Lee S, Hou YJ, Van Oosten MJ, Zhang H, Tao WA, Zhu JK (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A 110:11205–11210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Ni J, Shah F, Liu W, Wang D, Yao Y, Hu H, Huang S, Hou J, Fu S, Wu L (2019) Overexpression of the stress inducible SsMAX2 promotes drought and salt resistance via the regulation of redox homeostasis in Arabidopsis. Int J Mol Sci 20:837. https://doi.org/10.3390/ijms20040837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:8.1–8.31

    Article  Google Scholar 

  • Wu F, Gao Y, Yang W, Sui N, Zhu J (2022) Biological functions of strigolactones and their crosstalk with other phytohormones. Front Plant Sci 13:821563. https://doi.org/10.3389/fpls.2022.821563

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X, Zhou Y-H, Shi K, Zhou J, Foyer CH, Yu J-Q (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66(10):2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) 2′-Epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55:8067–8072

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Kisugi T, Nomura T, Akiyama K, Asami T, Yoneyama K (2016) Structure- and stereospecific transport of strigolactones from roots to shoots. J Pestic Sci 41:55–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Yoneyama K, Kisugi T, Nomura T, Akiyama K et al (2015) Strigolactones are transported from roots to shoots, although not through the xylem. J Pestic Sci 40:214–216

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K (2013) Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant 6:153–163

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T et al (2008) Isolation and identification of alectrol as (+)-orobanchyl acetate, a novel germination stimulant for root parasitic plants. Phytochemistry 69:427–431

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Sun X, Wang X, Shi Q, Yang X, Yang F (2011) Involvement of a cucumber MAPK gene (CsNMAPK) in positive regulation of ROS scavengence and osmotic adjustment under salt stress. Sci Hortic 127:488–493. https://doi.org/10.1016/j.scienta.2010.11.013

    Article  CAS  Google Scholar 

  • Yamada Y, Umehara M (2015) Possible roles of Strigolactones during leaf senescence. Plan Theory 4:664–677

    CAS  Google Scholar 

  • Yamasaki H, Ogura MP, Kingjoe KA, Cohen MF (2019) D-cysteine-induced rapid root abscission in the water fern Azolla pinnata: implications for the linkage between d-amino acid and reactive sulfur species (RSS) in plant environmental responses. Antioxidants 8:411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Tsuichihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30(10):1320–1325

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Ming Z, Yan L, Li S, Wang F, Ma S et al (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536:469–473. https://doi.org/10.1038/nature19073

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Wang L, Li Y, Chen L, Li S, Du X et al (2018) Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. J Exp Bot 69:2355–2365. https://doi.org/10.1093/jxb/ery014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y et al (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Kisugi T, Nomura T, Nakatani Y, Akiyama K, Christopher SP, McErlean CSP (2018) Which are the major players, canonical or non-canonical strigolactones? J Exp Bot 69(9):2231–2239. https://doi.org/10.1093/jxb/ery090

    Article  CAS  PubMed  Google Scholar 

  • Zhang TG, Shi ZF, Zhang XH, Zheng S, Wang J, Mo JN (2020b) Alleviating effects of exogenous melatonin on salt stress in cucumber. Sci Hortic 262:109070. https://doi.org/10.1016/j.scienta.2019.109070

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Sun Y, Zheng S, Wang J, Zhang T (2020a) Hydrogen peroxide is involved in strigolactone induced low temperature stress tolerance in rape seedlings (Brassica rapa L.). Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2020.11.006

  • Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, Van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Zhu HY, Zhang Q, Li MY, Yan M, Wang R, Wang LL, Welti R, Zhang WH, Wang XM (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LH, Zhao LH, Zhou XE, Yi W, Wu Z, Liu Y et al (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25:1219–1236. https://doi.org/10.1038/cr.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Xing L, Wang X, Hou YJ, Gao J, Wang P et al (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53. https://doi.org/10.1126/scisignal.2005051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Li Y, Xi X, Ma C, Sun Z, Yang X, Li X, Tian Y, Wang C (2021) Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. Plant Physiol Biochem 159:113–122

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signaling molecules in parasitic weed germination. Pest Manag Sci 65:478–491

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwan Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashem, H.A., Khalil, R. (2023). Insight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals. In: Faizan, M., Hayat, S., Ahmed, S.M. (eds) Reactive Oxygen Species. Springer, Singapore. https://doi.org/10.1007/978-981-19-9794-5_11

Download citation

Publish with us

Policies and ethics