Skip to main content

Hyperspectral Image Classification Based on 3D Calibrated Attention

  • Conference paper
  • First Online:
Proceedings of the 8th China High Resolution Earth Observation Conference (CHREOC 2022) (CHREOC 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 969))

Included in the following conference series:

  • 372 Accesses

Abstract

Hyperspectral image (HSI) classification aiming at identifying the pixel-level attributes, is a challenging task in remote sensing image interpretation. Informative features play an important role in HSI classification. Existing attention-based convolutional neural networks treat each convolutional layer as a separate process that miss the correlation among different layers. To slove the problem, we introduce the 3D calibrated attention module (3DCAM) to model the holistic dependencies among channels and positions. In particular, The 3DCAM can be used for the correlation among channels to achieve more powerful feature representation and correlation learning. Furthermore, we design a 3D calibrated attention-based network, which integrates 3D-CNN and 2D-CNN layers. Both the spectral and spatial feature are employed for classification. Extensive experiments on the Indian Pines and Pavia University datasets demonstrate that the proposed method performs favorably against three closely related methods.

This work was supported in part by the National Key Research and Development Program of China under Grant 2018AAA0100602, and in part by the National Natural Science Foundation of Shandong Province under Grant ZR2019QD011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audebert, N., Le Saux, B., Lefevre, S.: Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci. Remote Sens. Mag. 7(2), 159–173 (2019)

    Article  Google Scholar 

  2. Sun, W., Ren, K., Meng, X., Xiao, C., Yang, G., Peng, J.: A band divide-and-conquer multispectral and hyperspectral image fusion method. IEEE Trans. Geosci. Remote Sens. 60, 1–13, Art. no. 5502113 (2022)

    Google Scholar 

  3. Song, M., Yu, C., Xie, H., Chang, C.-I.: Progressive band selection processing of hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(10), 1762–1766 (2020)

    Article  Google Scholar 

  4. Zhong, Z., Li, J., Luo, Z., Chapman, M.: Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 56(2), 847–858 (2018)

    Google Scholar 

  5. Paoletti, M.E., et al.: Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(4), 2145–2160 (2019)

    Article  Google Scholar 

  6. Alipour-Fard, T., Paoletti, M.E., Haut, J.M., Arefi, H., Plaza, J., Plaza, A.: Multibranch selective kernel networks for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 18(6), 1089–1093 (2021)

    Article  Google Scholar 

  7. Roy, S.K., Krishna, G., Dubey, S.R., Chaudhuri, B.B.: HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 17(2), 277–281 (2020)

    Article  Google Scholar 

  8. Lai, Q., Khan, S., Nie, Y., Sun, H., Shen, J., Shao, L.: Understanding more about human and machine attention in deep neural networks. IEEE Trans. Multimed. 23, 2086–2099 (2021)

    Article  Google Scholar 

  9. Zhu, Y., Zhao, C., Guo, H., Wang, J., Zhao, X., Lu, H.: Attention CoupleNet: fully convolutional attention coupling network for object detection. IEEE Trans. Image Process. 28(1), 113–126 (2019)

    Article  MathSciNet  Google Scholar 

  10. Lian, S., Jiang, W., Hu, H.: Attention-aligned network for person re-identification. IEEE Trans. Circuits Syst. Video Technol. 31(8), 3140–3153 (2021)

    Article  Google Scholar 

  11. Du, W., Wang, Y., Qiao, Y.: Recurrent spatial-temporal attention network for action recognition in videos. IEEE Trans. Image Process. 27(3), 1347–1360 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans. Image Process. 27(5), 2368–2378 (2018)

    Article  MathSciNet  Google Scholar 

  13. Guo, W., Zhang, Y., Yang, J., Yuan, X.: Re-attention for visual question answering. IEEE Trans. Image Process. 30, 6730–6743 (2021)

    Article  Google Scholar 

  14. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

    Article  Google Scholar 

  15. Woo, S., Park, J., Lee, J.-Y., Kweon, I.: CBAM: Convolutional block attention module. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  16. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECANet: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  17. Wang, K., Du, S., Liu, C., Cao, Z.: Interior attention-aware network for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 60, 1–13, Art no. 5002013 (2022)

    Google Scholar 

  18. Xiong, W., Xiong, Z., Cui, Y.: An explainable attention network for fine-grained ship classification using remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–14, Art no. 5620314 (2022)

    Google Scholar 

  19. Han, Z., Gao, Y., Jiang, X., Wang, J., Li, W.: Multisource remote sensing classification for coastal wetland using feature intersecting learning. IEEE Geosci. Remote Sens. Lett. 19, 1–5, Art no. 6008405 (2022)

    Google Scholar 

  20. Bai, L., Liu, Q., Li, C., Ye, Z., Hui, M., Jia, X.: Remote sensing image scene classification using multiscale feature fusion covariance network with Octave convolution. IEEE Trans. Geosci. Remote Sens. 60, 1–14, Art no. 5620214 (2022)

    Google Scholar 

  21. Lu, Z., Liang, S., Yang, Q., Du, B.: Evolving block-based convolutional neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–21, Art no. 5525921 (2022)

    Google Scholar 

  22. Li, H.-C., Hu, W.-S., Li, W., Li, J., Du, Q., Plaza, A.: A3 CLNN: Spatial, spectral and multiscale attention ConvLSTM neural network for multisource remote sensing data classification. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 747–761 (2022)

    Google Scholar 

  23. Cai, W., Wei, Z.: Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci. Remote Sens. Lett. 19, 1–5, Art no. 8002005 (2022)

    Google Scholar 

  24. Zhu, M., Jiao, L., Liu, F., Yang, S., Wang, J.: Residual spectral-spatial attention network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(1), 449–462 (2021)

    Article  Google Scholar 

  25. Wang, X., Tan, K., Du, P., Pan, C., Ding, J.: A unified multiscale learning framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–19, Art no. 4508319 (2022)

    Google Scholar 

  26. Wang, X., Fan, Y.: Multiscale densely connected attention network for hyperspectral image classification. IEEE J. Selected Top. Appl. Earth Observ. Remote Sens. 15, 1617–1628 (2022)

    Google Scholar 

  27. Dong, Z., Cai, Y., Cai, Z., Liu, X., Yang, Z., Zhuge, M.: Cooperative spectral-spatial attention dense network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 18(5), 866–870 (2021)

    Article  Google Scholar 

  28. Niu, B., Wen, W., Ren, W., Zhang, X., Yang, L., Wang, S., Zhang, K., Cao, X., Shen, H.: Single image super-resolution via a holistic attention network. In: Proceedings of European Conference on Computer Vision, pp. 191–207 (2020)

    Google Scholar 

  29. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)

    Article  Google Scholar 

  30. Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9(1) (2017)

    Google Scholar 

  31. Zhang, M., Li, W., Du, Q.: Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 27(6), 2623–2634 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Gao, F. (2023). Hyperspectral Image Classification Based on 3D Calibrated Attention. In: Wang, L., Wu, Y., Gong, J. (eds) Proceedings of the 8th China High Resolution Earth Observation Conference (CHREOC 2022). CHREOC 2022. Lecture Notes in Electrical Engineering, vol 969. Springer, Singapore. https://doi.org/10.1007/978-981-19-8202-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8202-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8201-9

  • Online ISBN: 978-981-19-8202-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics