Skip to main content

Mesh-Free Methods with Special Focus on EFGM

  • Chapter
  • First Online:
Advanced Computational Methods and Geomechanics

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 560 Accesses

Abstract

TO undertake a successful computation task w.r.t. the construction and operation process of engineering structures, one of the mostly concerned obstacles is the limited or incomplete capability to automatically generate regular grid or to re-mesh retorted grid for complex structure domain containing structural planes and undergoing finite deformation. This chapter presents the principle and basic algorithm of the “element free Galerkin method (EFGM)” in structural dynamics that belongs to the family of “mesh-free methods (MFMs)”. In EFGM, the basis functions no longer belong to standard PU (e.g. the shape functions of fundamental FEM), instead, they are created from the neighborhood field nodes in an “influence or support domain” of any shape by the technique of “moving least squares (MLS)” approximation. The nodal variables in the piecewise trial function may be solved from the algebraic equation set according to the virtual work principle or variational principle (weak form). In this manner, no rigorous restraint is imposed on the generation of scattered field nodes (points), which allows for a great simplification in the pre-process work of complex engineering structure. Although it has not outperformed FEMs in the routine problems of geotechnical and hydraulic structures, yet EFGM exhibits great expectation due to its flexibility in handling structural planes, crack growth, and other large deformation issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreaus U, Batra RC, Porfiri M. Vibrations of cracked Euler-Bernoulli beams using meshless local Petrov-Galerkin (MLPG) method. Comput Model Eng Sci. 2005;9(2):111–31.

    MathSciNet  MATH  Google Scholar 

  • Arroyo M, Ortiz M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Meth Eng. 2006;65(13):2167–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Atluri SN. The meshless Local Petrov-Galerkin (MLPG) method. Stuttgart (Germany): Tech Science Press; 2002.

    MATH  Google Scholar 

  • Atluri SN, Cho JY, Kim HG. Analysis of thin beams using the meshless local Petrov-Galerkin method with generalized moving least squares interpolations. Comput Mech. 1999a;24(5):334–47.

    Article  MATH  Google Scholar 

  • Atluri SN, Kim HG, Cho JY. A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods. Comput Mech. 1999b;24(5):348–72.

    Article  MATH  Google Scholar 

  • Atluri SN, Shen SP. The meshless local Petrov-Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. CMES-Comput Model Eng Sci. 2002;3(1):11–51.

    MathSciNet  MATH  Google Scholar 

  • Atluri SN, Zhu TL. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech. 1998;22(2):117–27.

    Article  MathSciNet  MATH  Google Scholar 

  • Atluri SN, Zhu TL. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput Mech. 2000;25(2–3):169–79.

    Article  MATH  Google Scholar 

  • Attaway SW, Heinstein MW, Swegle JW. Coupling of smooth particle hydrodynamics with the finite element method. Nucl Eng Des. 1994;150(2–3):199–205.

    Article  Google Scholar 

  • Babuška I, Melenk JM. The partition of unity method. Int J Numer Meth Eng. 1997;40(4):727–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Babuška I, Zhang Z. The partition of unity method for the elastically supported beam. Comput Meth Appl Mech Eng. 1998;152(1–2):1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Comput Meth Appl Mech Eng. 1996;139(1–4):49–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng. 1999;45(5):601–20.

    Article  MATH  Google Scholar 

  • Belytschko T, Fleming M. Smoothing, enrichment and contact in the element-free Galerkin method. Comput Struct. 1999;71(2):173–95.

    Article  MathSciNet  Google Scholar 

  • Belytschko T, Gu L, Lu YY. Fracture and crack growth by element-free Galerkin methods. Model Simul Mater Sci Eng. 1994a;2(3A):519–34.

    Article  Google Scholar 

  • Belytschko T, Guo T, Liu WK, Xiao SP. A unified stability analysis of meshless particle methods. Int J Numer Meth Eng. 2000a;48(9):1359–400.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Krongauz Y, Fleming M, Organ D, Liu WKS. Smoothing and accelerated computations in the element free Galerkin method. J Comput Appl Math. 1996a;74(1–2):111–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Comp Meth Appl Mech Eng. 1996b;139(1–4):3–47.

    Article  MATH  Google Scholar 

  • Belytschko T, Lu YY. Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct. 1995;32(17–18):2547–70.

    Article  MATH  Google Scholar 

  • Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. Int J Numer Meth Eng. 1994b;37(2):229–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Lu YY, Gu L. Crack propagation by element-free Galerkin methods. Eng Fract Mech. 1995a;51(2):295–315.

    Article  Google Scholar 

  • Belytschko T, Organ D. Coupled finite element-element-free Galerkin method. Comput Mech. 1995;17:186–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Organ D, Gerlach C. Element-free galerkin methods for dynamic fracture in concrete. Comp Meth Appl Mech Eng. 2000b;187(3–4):385–99.

    Article  MATH  Google Scholar 

  • Belytschko T, Organ D, Krongauz Y. A coupled finite element–element-free Galerkin method. Comput Mech. 1995b;17(3):186–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods. Int J Numer Meth Eng. 1996;39(6):923–38.

    Article  MATH  Google Scholar 

  • Bentley JL, Friedman JH. Data structures for range searching. ACM Comput Surv (CSUR). 1979;11(4):397–409.

    Article  Google Scholar 

  • Bouhala L, Makradi A, Belouettar S. Thermal and thermo-mechanical influence on crack propagation using an extended mesh free method. Eng Fract Mech. 2012;88:35–48.

    Article  Google Scholar 

  • Cao XH, Chen SF, Chen SH. Generation of tetrahedral meshes in 3-D domains by advancing front method. J Wuhan Univ Hydr Elec Eng (WUHEE). 1998;31(1):16–20 (in Chinese with English abstract).

    Google Scholar 

  • Carpinteri A, Ferro G, Ventura G. The partition of unity quadrature in meshless methods. Int J Numer Meth Eng. 2002;54(7):987–1006.

    Article  MathSciNet  MATH  Google Scholar 

  • Carpinteri A, Ferro G, Ventura G. The partition of unity quadrature in element-free crack modeling. Comput Struct. 2003;81(18–19):1783–94.

    Article  Google Scholar 

  • Chen JS, Pan C, Rogue CMOL, Wang HP. A Lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech. 1998a;22(3):289–307.

    Article  MATH  Google Scholar 

  • Chen JS, Pan C, Wu CT, Liu WK. Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Meth Appl Mech Eng. 1996a;139(1–4):195–227.

    Article  MATH  Google Scholar 

  • Chen JS, Wu CT, Yoon S, You T. A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Meth Eng. 2001;50(2):435–66.

    Article  MATH  Google Scholar 

  • Chen JS, Wang HP. New boundary condition treatments in meshfree computation of contact problems. Comp Meth Appl Mech Eng. 2000;187(3–4):441–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SF, Chen SH, Cao XH. Automatic generation of unstructured hexahedron mesh for 3D complicated domain. Rock Soil Mech. 1998b;19(4):46–51 (in Chinese with English abstract).

    Google Scholar 

  • Chen SH. Adaptive FEM analysis for two-dimensional unconfined seepage problems. J Hydrodyn. 1996;19(1):60–6.

    MathSciNet  MATH  Google Scholar 

  • Chen SH. Computational geomechanics and hydraulic structures. Berlin (Germany): Springer; 2018.

    MATH  Google Scholar 

  • Chen SH, Wang JS, Zhang JL. Adaptive elasto-viscoplastic FEM analysis for hydraulic structures. J of Hydraulic Eng. 1996b;27(2):68–75 (in Chinese with English abstract).

    Google Scholar 

  • Chung HJ, Belytschko T. An error estimate in the EFG method. Comput Mech. 1998;21(2):91–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Clough RW, Penzien J. Dynamics of structures. New York (USA): McGraw-Hill; 1975.

    MATH  Google Scholar 

  • Cordes LW, Moran B. Treatment of material discontinuity in the element-free Galerkin method. Comp Meth Appl Mech Eng. 1996;139(1–4):75–89.

    Article  MATH  Google Scholar 

  • Daxini SD, Prajapati JM. A review on recent contribution of meshfree methods to structure and fracture mechanics applications. Sci World J. 2014;Article ID 247172.

    Google Scholar 

  • Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech. 1999;23(3):219–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Duarte CA, Oden JT. Hp clouds—a meshless method to solve boundary-value problem. Technical Report. TICAM, the University of Texas at Austin (USA); 1995.

    Google Scholar 

  • Duarte CA, Oden JT. H-p clouds—an h–p meshless method. Numer Methods Partial Differ Equ. 1996;12(6):673–705.

    Article  MathSciNet  MATH  Google Scholar 

  • Duflot M, Nguyen-Dang H. Fatigue crack growth analysis by an enriched meshless method. J Comput Appl Math. 2004a;168(1–2):155–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Duflot M, Nguyen-Dang H. A meshless method with enriched weight functions for fatigue crack growth. Int J Numer Meth Eng. 2004b;59(14):1945–61.

    Article  MATH  Google Scholar 

  • Fernández-Méndez S, Huerta A. Imposing essential boundary conditions in mesh-free methods. Comput Meth Appl Mech Eng. 2004;193(12–14):1257–75.

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández-Méndez S, Huerta A. Coupling finite elements and particles for adaptivity: an application to consistently stabilized convection–diffusion. In: Griebel M, Schweitzer MA, editors. Meshfree methods for partial differential equations, Lecture Notes in Computational Science and Engineering (vol. 26). Berlin (Germany): Springer; 2002. p. 117–129.

    Google Scholar 

  • Fleming M, Chu YA, Moran B, Belytschko T. Enriched element-free Galerkin methods for crack tip fields. Int J Numer Meth Eng. 1997;40(8):1483–504.

    Article  MathSciNet  Google Scholar 

  • Fleming MA. The element-free Galerkin method for fatigue and quasi-static fracture. PhD Thesis. Northwestern University (USA); 1997.

    Google Scholar 

  • Fries TP, Matthies HG. Classification and overview of meshfree methods. Technical Report. Department of Mathematics and Computer Science, Technical University of Braunschweig (Germany); 2003.

    Google Scholar 

  • Gavete L, Falcón S, Ruiz A. An error indicator for the element-free Galerkin method. Eur J Mech A/Solids. 2001;20(2):327–41.

    Article  MATH  Google Scholar 

  • Gavete L, Cuesta JL, Ruiz A. A procedure for approximation of the error in the EFG method. Int J Numer Meth Eng. 2002;53(3):677–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Gavete L, Gavete ML, Alonso B, Martin AJ. A posteriori error approximation in EFG method. Int J Numer Meth Eng. 2003;58(15):2239–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181(3):375–89.

    Article  MATH  Google Scholar 

  • Gu YT, Liu GR. A coupled element free Galerkin/boundary element method for stress analysis of two-dimension solids. Comput Methods Appl Mech Eng. 2000;190:4405–19.

    Article  Google Scholar 

  • Gu YT, Liu GR. A local point interpolation method for static and dynamic analysis of thin beams. Comp Meth App Mech Eng. 2001;190(42):5515–28.

    Article  MATH  Google Scholar 

  • Gu YT, Liu GR. A meshfree weak-strong (MWS) form method for time dependent problems. Comput Mech. 2005;35(2):134–45.

    Article  MATH  Google Scholar 

  • Häussler-Combe U, Korn C. An adaptive approach with the element-free Galerkin method. Comput Meth Appl Mech Eng. 1998;162(1–4):203–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Hegen D. Element-free Galerkin methods in combination with finite element approaches. Comput Methods Appl Mech Eng. 1996;135:143–66.

    Article  MATH  Google Scholar 

  • Huerta A, Belytschko T, Fernández-Méndez S, Rabczuk T. Meshfree methods. In: Stein E, De Borst R, Hughes TJR, editors. Encyclopedia of computational mechanics. New York (USA): Wiley; 2004.

    Google Scholar 

  • Idelsohn SR, Oñate E, Calvo N, Del Pin F. The meshless finite element method. Int J Numer Methods Eng. 2003;58(6):893–912.

    Article  MathSciNet  MATH  Google Scholar 

  • Idelsohn SR, Oñate E, Del Pin F. The particle finite element method: a powerful tool to solve incompressible flows with free surfaces and breaking waves. Int J Numer Meth Eng. 2004;61(7):964–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Khosravifard A, Hematiyan MR. A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Eng Anal Bound Elem. 2010;34(1):30–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim HG, Atluri SN. Arbitrary placement of secondary nodes, and error control, in the meshless local Petrov-Galerkin (MLPG) method. Comput Model Eng Sci. 2000;1(3):11–32.

    MathSciNet  MATH  Google Scholar 

  • Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Comp Meth Appl Mech Eng. 1996;131(1–2):133–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Krongauz Y, Belytschko T. EFG approximation with discontinuous derivatives. Int J Numer Meth Eng. 1998;41(7):1215–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Krysl P, Belytschko T. Element-free Galerkin method: convergence of the continuous and discontinuous shape functions. Comput Meth Appl Mech Eng. 1997;148(3–4):257–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math Comput. 1981;37(155):141–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee NS, Bathe KJ. Effects of element distortions on the performance of isoparametric elements. Int J Numer Meth Eng. 1993;36(20):3553–76.

    Article  MATH  Google Scholar 

  • Lee GH, Chung HJ, Choi CK. Adaptive crack propagation analysis with the element-free Galerkin method. Int J Numer Meth Eng. 2003;56(3):331–50.

    Article  MATH  Google Scholar 

  • Lee CK, Zhou CE. On error estimation and adaptive refinement for element free Galerkin method. Part I. Stress recovery and a posteriori error estimation. Comput Struct. 2004a;82(4–5):413–28.

    Google Scholar 

  • Lee CK, Zhou CE. On error estimation and adaptive refinement for element free Galerkin method. Part II. Adaptive refinement. Comput Struct. 2004b;82(4–5):429–43

    Google Scholar 

  • Li SF, Hao W, Liu WK. Mesh-free simulations of shear banding in large deformation. Int J Solids Struct. 2000;37(48–50):7185–206.

    Article  MATH  Google Scholar 

  • Li WD, Chen SH. Numerical modeling for frictional contact problems. Rock Soil Mech. 2003a;24(3):385–8 (in Chinese with English abstract).

    Google Scholar 

  • Li WD, Chen SH. Vibration analysis by an effective meshless method. Chin J Comput Mech. 2003b;20(6):756–63 (in Chinese with English abstract).

    Google Scholar 

  • Li SF, Liu WK. Meshless and particle methods and their applications. Appl Mech Rev. 2002;55(1):1–34.

    Article  Google Scholar 

  • Lin H, Atluri SN. The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations. CMES-Comput Model Eng Sci. 2001;2(2):117–42.

    MathSciNet  Google Scholar 

  • Liszka TJ, Duarte CAM, Tworzydlo WW. Hp-meshless cloud method. Comput Meth Appl Mech Eng. 1996;139(1–4):263–88.

    Article  MATH  Google Scholar 

  • Liu GR. Meshfree Methods: moving beyond the finite element. 2nd ed. Boca Raton (USA): CRC Press; 2003.

    Google Scholar 

  • Liu GR. A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part I, theory. Int J Numer Meth Eng. 2010;81(9):1093–126.

    Article  MATH  Google Scholar 

  • Liu GR, Gu YT. Coupling element free Galerkin and hybrid boundary element methods using modified variational formulation. Comput Mech. 2000;26:166–73.

    Article  MATH  Google Scholar 

  • Liu GR, Gu YT. A point interpolation method for two-dimensional solids. Int J Numer Methods Eng. 2001;50:937–95.

    Article  MATH  Google Scholar 

  • Liu GR, Gu YT. A meshfree method: meshfree weak-strong (MWS) form method, for 2-D solids. Comput Mech. 2003;33(1):2–14.

    Article  MATH  Google Scholar 

  • Liu GR, Liu MB. Smoothed particle hydrodynamics: a meshfree particle method. New Jersey (USA): World Scientific Publishing Co., Pte. Ltd.; 2003.

    Book  MATH  Google Scholar 

  • Liu GR, Tu ZH. An adaptive procedure based on background cells for meshless methods. Comp Meth Appl Mech Eng. 2002;191(17–18):1923–43.

    Article  MATH  Google Scholar 

  • Liu GR, Wu YL, Ding H. Meshfree weak-strong (MWS) form method and its application to incompressible flow problems. Int J Numer Meth Fluids. 2004a;46(10):1025–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu L, Liu GR, Tan VBC. Element free method for static and free vibration analysis of spatial thin shell structures. Comp Meth Appl Mech Eng. 2002;191(51–52):5923–42.

    Article  MATH  Google Scholar 

  • Liu QS, Sun L, Tang CH, Chen L. Simulate intersecting 3D hydraulic cracks using a hybrid “FE-Meshfree” method. Eng Anal Bound Elem. 2018;91:24–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu WK, Han WM, Lu HS, Li SF, Cao J. Reproducing kernel element method. Part I. Theoretical formulation. Comput Meth Appl Mech Eng. 2004b;193(12–14):933–51.

    Google Scholar 

  • Liu WK, Chen Y. Wavelet and multiple scale reproducing kernel method. Int J Numer Meth Fluid. 1995;21(10):901–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu WK, Jun S, Li SF, Adee J, Belytschko T. Reproducing kernel particle methods for structural dynamics. Int J Numer Meth Eng. 1995a;38(10):1655–79.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. Int J Numer Meth Eng. 1995b;20(8–9):1081–106.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu WK, Uras RA, Chen Y. Enrichment of the finite element method with reproducing kernel particle method. ASME J Appl Mech. 1997;64(4):861–70.

    Article  MATH  Google Scholar 

  • Löhner R, Sacco C, Oñate E, Idelsohn S. A finite point method for compressible flow. Int J Numer Meth Eng. 2002;53(8):1765–79.

    Article  MATH  Google Scholar 

  • Lu YY, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Comp Meth Appl Mech Eng. 1994;113:397–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Lucy LB. A numerical approach to the testing of the fission hypothesis. Astron J. 1977;82:1013–24.

    Article  Google Scholar 

  • Melenk JM, Babuška I. The partition of unity finite element method: basic theory and applications. Comput Meth Appl Mech Eng. 1996;139(1–4):289–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Mukherjee YX, Mukherjee S. The boundary node method for potential problems. Int J Numer Meth Eng. 1997;40(5):797–815.

    Article  MATH  Google Scholar 

  • Nguyen VP, Rabczuk T, Bordas SPA, Duflot M. Meshless methods: a review and computer implementation aspects. Math Comput Simul. 2008;79(3):763–813.

    Article  MathSciNet  MATH  Google Scholar 

  • Nayroles B, Touzot G, Viilon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech. 1992;10(5):307–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL. A finite point method in computational mechanics: applications to convective transport and fluid flow. Int J Numer Meth Eng. 1996;39(22):3839–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Ouatouati AE, Johnson D. A new approach for numerical modal analysis using the element-flee method. Int J Numer Meth Eng. 1999;46(1):1–27.

    Article  MATH  Google Scholar 

  • Perić D, Hochard CH, Dutko MD, Owen DRJ. Transfer operators for evolving meshes in small strain elasto-plasticity. Comp Meth Appl Mech Eng. 1996;137(3–4):331–44.

    Article  MATH  Google Scholar 

  • Rabczuk T, Areias PMA. A meshfree thin shell for arbitrary evolving cracks based on an external enrichment. Comput Model Eng Sci. 2006;16(2):115–30.

    Google Scholar 

  • Rabczuk T, Areias PMA, Belytschko T. A simplified meshfree methods for shear bands with cohesive surfaces. Int J Numer Meth Eng. 2007;69(5):993–1021.

    Article  MATH  Google Scholar 

  • Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Meth Appl Mech Eng. 2007;196(29–30):2777–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk T, Xiao SP, Sauer M. Coupling of meshfree methods with finite elements: basic concepts and test results. Commun Numer Meth Eng. 2006;22(10):1031–65.

    Article  MATH  Google Scholar 

  • Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech. 2007;39(6):743–60.

    Article  MATH  Google Scholar 

  • Rajendran S, Zhang BR. A FE-meshfree QUAD4 element based on partition of unity. Comput Meth Appl Mech Eng. 2007;197(1–4):128–47.

    Article  MATH  Google Scholar 

  • Ren J, Liew KM. Mesh-free method revisited: two new approaches for the treatment of essential boundary conditions. Int J Comput Eng Sci. 2002;3(2):219–33.

    Google Scholar 

  • Shepard D. A two-dimensional function for irregularly spaced points. In: Proceedings of the 23rd ACM national conference. Princeton (USA): Brandon/Systems Press Inc.; 1968. p. 517–24.

    Google Scholar 

  • Simo JS, Laursen TA. An augmented Lagrangian treatment of contact problems involving friction. Comput Struct. 1992;42(1):97–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun L, Tao SJ, Tang XH, Liu QS. Simulation of the nonplanar three-dimensional thermal cracking using the finite element-meshfree method. Appl Math Model. 2021;99:106–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Tao SJ, Tang XH, Rutqvist J, Liu QS, Hu MS. The influence of stress anisotropy and stress shadow on frost cracking in rock. Comput Geotech. 2021;133(4): 103967.

    Article  Google Scholar 

  • Terry TG. Fatigue crack propagation modeling using the element free Galerkin method. MSc Thesis. Northwestern University (USA); 1994.

    Google Scholar 

  • Tsay RJ, Chiou YJ, Chuang WL. Crack growth prediction by manifold method. J Eng Mech. 1999;125(8):884–90.

    Google Scholar 

  • Wang D, Chen JS. A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration. Comput Mech. 2006;39(1):83–90.

    Article  MATH  Google Scholar 

  • Wang JD, Liu GR. A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng. 2002;54(11):1623–1548.

    Article  MATH  Google Scholar 

  • Wang JG, Liu GR, Wu YG. A point interpolation method for simulating dissipation process of consolidation. Comput Meth Appl Mech Eng. 2001;190:5907–22.

    Article  MATH  Google Scholar 

  • Wang S, Liu H. Modeling brittle-ductile failure transition with meshfree method. Int J Impact Eng. 2010;37(7):783–91.

    Article  Google Scholar 

  • Williams ML. On the stress distribution at the base of a stationary crack. J Appl Mech. 1957;24(1):109–14.

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon S, Wu CT, Wang HP, Chen JS. Efficient meshfree formulation for metal forming simulations. J Eng Mater Techn. 2001;123(4):462–7.

    Article  Google Scholar 

  • Zhang ZQ, Zhou JX, Wang XM, Zhang YF, Zhang L. Investigations on reproducing kernel particle method enriched by partition of unity and visibility criterion. Comput Mech. 2004;34(4):310–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu JZ, Zienkiewicz OC, Hinton E, Wu J. A new approach to the development of automatic quadrilateral mesh generation. Int J Numer Meth Eng. 1991;32(4):849–66.

    Article  MATH  Google Scholar 

  • Zhuang X, Heaney C, Augarde C. On error control in the element-free Galerkin method. Eng Anal Bound Elem. 2012;36(3):351–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Zi G, Rabczuk T, Wall WA. Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech. 2007;40(2):367–82.

    Article  MATH  Google Scholar 

  • Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Meth Eng. 1987;24(2):337–57.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, S. (2023). Mesh-Free Methods with Special Focus on EFGM. In: Advanced Computational Methods and Geomechanics. Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-19-7427-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7427-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7426-7

  • Online ISBN: 978-981-19-7427-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics