Skip to main content

Obsessive-Compulsive Disorder, PANDAS, and Tourette Syndrome: Immuno-inflammatory Disorders

  • Chapter
  • First Online:
Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders

Abstract

In the last years, much focus has been given to the possible role of inflammatory and immunologic alterations in the pathophysiology of obsessive-compulsive disorder (OCD) and some related conditions, such as pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) and Tourette syndrome (TS). Although the matter is intriguing, the available data are still controversial and/or limited. Therefore, the aim of this chapter was at reviewing and commenting on the literature on possible dysfunctions of inflammatory and immune system processes in OCD, PANDAS, and TS.

This narrative review was carried out through searching PubMed and Google Scholar for English language papers from January 1985 to December 31, 2021.

The data gathered up to now would suggest that the mechanisms involved might be heterogeneous according to the age of the patients and the disorder examined. Indeed, PANDAS seem more related to infections triggering autoimmunity not necessarily following group A beta-hemolytic streptococcal (GABHS) infection, as supposed in the past. Autoimmunity seems also important in TS, if coupled with an individual vulnerability that can be genetic and/or environmental. The data in adult OCD, albeit scattered and sometimes obtained in small samples of patients, would indicate that immune system and inflammatory processes are involved in the pathophysiology of the disorder. However, it is still unclear to conclude whether they are primary or secondary phenomena.

In conclusion, taken together, the current findings pave that way towards novel and promising domains to explore the pathophysiology of OCD and related disorders, as well towards the development of innovative therapeutic strategy beyond current pharmacological paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

ABGA:

Anti-basal ganglia antibodies

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

CASPR2:

Contactin-associated protein-like 2

CNS:

Central nervous system

COX-2:

Ciclooxigenase-2

CSF:

Cerebrospinal fluid

CSTC:

Cortico-striatal-thalamo-cortical

DSM-5:

Fifth edition of the Diagnostic and Statistical Manual of Mental Disorders

GABA:

Gamma-aminobutyric acid

GABARAP:

GABA receptor-associated protein

GABHS:

Group A beta-hemolytic streptococcus

HCs:

Healthy controls

HPA:

Hypothalamic-pituitary axis

IDO:

Indoleamine-2,3-dehydrogenase

IFN:

Interferon

IL:

Interleukin

LPS:

Lipopolysaccharide

MS:

Multiple sclerosis

NK:

Natural killer

NSAIDs:

Nonsteroidal anti-inflammatory drugs

OCD:

Obsessive-compulsive disorder

OCRDs:

Obsessive-compulsive and related disorders

OCS:

Obsessive-compulsive symptoms

PANDAS:

Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections

PANS:

Pediatric acute-onset neuropsychiatric syndrome

PD:

Parkinson’s disease

PET:

Positron emission tomography

ROS:

Reactive oxygen species

SLE:

Systemic lupus erythematosus

sTNFR1:

Soluble TNF receptor-1

sTNFR2:

Soluble TNF receptor-2

Th:

T helper

TM:

Transverse myelitis

TNF:

Tumor necrosis factor

Treg:

T regulatory

TS:

Tourette syndrome

VT:

Distribution volume

Y-BOCS:

Yale-Brown obsessive-compulsive scale

References

  1. Marazziti D, Mucci F, Lombardi A, Falaschi V, Dell’Osso L. The cytokine profile of OCD: pathophysiological insights. Int J Interferon Cytokine Mediat Res. 2015;7:35–42. https://doi.org/10.2147/ijicmr.s76710.

    Article  CAS  Google Scholar 

  2. Kerr D, Krishnan C, Pucak ML, Carmen J. The immune system and neuropsychiatric diseases. Int Rev Psychiatry. 2005;17(6):443–9. https://doi.org/10.1080/0264830500381435.

    Article  PubMed  Google Scholar 

  3. Brambilla F, Bellodi L, Perna G. Plasma levels of tumor necrosis factor-alpha in patients with panic disorder: effect of alprazolam therapy. Psychiatry Res. 1999;89(1):21–7. https://doi.org/10.1016/s0165-1781(99)00091-8.

    Article  CAS  PubMed  Google Scholar 

  4. Rapaport MH, Stein MB. Serum interleukin-2 and soluble interleukin-2 receptor levels in generalized social phobia. Anxiety. 1994;1(2):50–3. https://doi.org/10.1002/anxi.3070010203.

    Article  CAS  PubMed  Google Scholar 

  5. Dell'Osso L, Carmassi C, Mucci F, Marazziti D. Depression, serotonin and tryptophan. Curr Pharm Des. 2016;22(8):949–54. https://doi.org/10.2174/1381612822666151214104826.

    Article  CAS  PubMed  Google Scholar 

  6. Fawcett EJ, Power H, Fawcett JM. Women are at greater risk of OCD than men: a meta-analytic review of OCD prevalence worldwide. J Clin Psychiatry. 2020;81(4):19r13085. https://doi.org/10.4088/JCP.19r13085.

    Article  PubMed  Google Scholar 

  7. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  8. Pallanti S, Hollander E, Bienstock C, Koran L, Leckman J, Marazziti D, et al. Treatment non-response in OCD: methodological issues and operational definitions. Int J Neuropsychopharmacol. 2002;5(2):181–91. https://doi.org/10.1017/S1461145702002900.

    Article  PubMed  Google Scholar 

  9. Marazziti D, Picchetti M, Baroni S, Ceresoli D, Consoli G, Catena Dell’Osso M. Current pharmacological and non pharmacological treatments for obsessive-compulsive disorder. J Psychopathol. 2012;18(1):5–18.

    Google Scholar 

  10. Denys D, Zohar J, Westenberg HG. The role of dopamine in obsessive-compulsive disorder: preclinical and clinical evidence. J Clin Psychiatry. 2004;65(Suppl 14):11–7.

    CAS  PubMed  Google Scholar 

  11. Pittenger C, Bloch MH, Williams K. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther. 2011;132(3):314–32. https://doi.org/10.1016/j.pharmthera.2011.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marazziti D, Albert U, Mucci F, Piccinni A. The glutamate and the immune systems: new targets for the pharmacological treatment of OCD. Curr Med Chem. 2018;25(41):5731–8. https://doi.org/10.2174/0929867324666171108152035.

    Article  CAS  PubMed  Google Scholar 

  13. Murphy ML, Pichichero ME. Prospective identification and treatment of children with pediatric autoimmune neuropsychiatric disorder associated with group A streptococcal infection (PANDAS). Arch Pediatr Adolesc Med. 2002;156(4):356–61. https://doi.org/10.1001/archpedi.156.4.356.

    Article  PubMed  Google Scholar 

  14. Murphy TK, Sajid MW, Goodman WK. Immunology of obsessive-compulsive disorder. Psychiatr Clin North Am. 2006;29(2):445–69. https://doi.org/10.1016/j.psc.2006.02.003.

    Article  PubMed  Google Scholar 

  15. da Rocha FF, Correa H, Teixeira AL. Obsessive-compulsive disorder and immunology: a review. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):1139–46. https://doi.org/10.1016/j.pnpbp.2007.12.026.

    Article  CAS  PubMed  Google Scholar 

  16. Teixeira AL, Rodrigues DH, Marques AH, Miguel EC, Fontenelle LF. Searching for the immune basis of obsessive-compulsive disorder. Neuroimmunomodulation. 2014;21(2-3):152–8. https://doi.org/10.1159/000356554.

    Article  CAS  PubMed  Google Scholar 

  17. Marazziti D, Mucci F, Fontenelle LF. Immune system and obsessive-compulsive disorder. Psychoneuroendocrinology. 2018;93:39–44. https://doi.org/10.1016/j.psyneuen.2018.04.013.

    Article  CAS  PubMed  Google Scholar 

  18. Cosco TD, Pillinger T, Emam H, Solmi M, Budhdeo S, Matthew Prina A, et al. Immune aberrations in obsessive-compulsive disorder: a systematic review and meta-analysis. Mol Neurobiol. 2019;56(7):4751–9. https://doi.org/10.1007/s12035-018-1409-x.

    Article  CAS  PubMed  Google Scholar 

  19. Marazziti D, Presta S, Pfanner C, Gemignani A, Rossi A, Sbrana S, et al. Immunological alterations in adult obsessive-compulsive disorder. Biol Psychiatry. 1999;46(6):810–4. https://doi.org/10.1016/s0006-3223(98)00371-0.

    Article  CAS  PubMed  Google Scholar 

  20. Lynch NE, Deiratany S, Webb DW, McMenamin JB. PANDAS (Paediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection). Ir Med J. 2006;99(5):155.

    CAS  PubMed  Google Scholar 

  21. Swedo SE, Seidlitz J, Kovacevic M, Latimer ME, Hommer R, Lougee L, et al. Clinical presentation of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections in research and community settings. J Child Adolesc Psychopharmacol. 2015;25(1):26–30. https://doi.org/10.1089/cap.2014.0073.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quagliariello A, Del Chierico F, Russo A, Reddel S, Conte G, Lopetuso LR, et al. Gut microbiota profiling and gut-brain crosstalk in children affected by pediatric acute-onset neuropsychiatric syndrome and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Front Microbiol. 2018;9:675. https://doi.org/10.3389/fmicb.2018.00675.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pavone P, Falsaperla R, Cacciaguerra G, Sapuppo A, Chiaramonte R, Lubrano R, et al. PANS/PANDAS: Clinical experience in IVIG treatment and state of the art in rehabilitation approaches. NeuroSci. 2020;1(2):75–84. https://doi.org/10.3390/neurosci1020007.

    Article  Google Scholar 

  24. Cavanna AE, Termine C. Tourette syndrome. Adv Exp Med Biol. 2012;724:375–83. https://doi.org/10.1007/978-1-4614-0653-2_28.

    Article  CAS  PubMed  Google Scholar 

  25. Martino D, Zis P, Buttiglione M. The role of immune mechanisms in Tourette syndrome. Brain Res. 2015;1617:126–43. https://doi.org/10.1016/j.brainres.2014.04.027.

    Article  CAS  PubMed  Google Scholar 

  26. Hsu CJ, Wong LC, Lee WT. Immunological dysfunction in Tourette syndrome and related disorders. Int J Mol Sci. 2021;22(2):853. https://doi.org/10.3390/ijms22020853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fluitman S, Denys D, Vulink N, Schutters S, Heijnen C, Westenberg H. Lipopolysaccharide-induced cytokine production in obsessive-compulsive disorder and generalized social anxiety disorder. Psychiatry Res. 2010;178(2):313–6. https://doi.org/10.1016/j.psychres.2009.05.008.

    Article  CAS  PubMed  Google Scholar 

  28. Pearlman DM, Vora HS, Marquis BG, Najjar S, Dudley LA. Anti-basal ganglia antibodies in primary obsessive-compulsive disorder: systematic review and meta-analysis. Br J Psychiatry. 2014;205(1):8–16. https://doi.org/10.1192/bjp.bp.113.137018.

    Article  PubMed  Google Scholar 

  29. Attwells S, Setiawan E, Wilson AA, Rusjan PM, Mizrahi R, Miler L, et al. Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry. 2017;74(8):833–40. https://doi.org/10.1001/jamapsychiatry.2017.1567.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mataix-Cols D, Frans E, Pérez-Vigil A, Kuja-Halkola R, Gromark C, Isomura K, et al. A total-population multigenerational family clustering study of autoimmune diseases in obsessive-compulsive disorder and Tourette's/chronic tic disorders. Mol Psychiatry. 2018;23(7):1652–8. https://doi.org/10.1038/mp.2017.215.

    Article  CAS  PubMed  Google Scholar 

  31. Jones HF, Han VX, Patel S, Gloss BS, Soler N, Ho A, et al. Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: transcriptomic data show common enriched innate immune pathways. Brain Behav Immun. 2021;94:308–17. https://doi.org/10.1016/j.bbi.2020.12.035.

    Article  CAS  PubMed  Google Scholar 

  32. Meyer J. Inflammation, obsessive-compulsive disorder, and related disorders. Curr Top Behav Neurosci. 2021;49:31–53. https://doi.org/10.1007/7854_2020_210.

    Article  PubMed  Google Scholar 

  33. Rao NP, Reddy MS, Reddy JY. Is there a role for immunological mechanisms in etiopathogenesis of obsessive-compulsive disorder? Indian J Psychol Med. 2013;35(1):1–3. https://doi.org/10.4103/0253-7176.112192.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gerentes M, Pelissolo A, Rajagopal K, Tamouza R, Hamdani N. Obsessive-Compulsive Disorder: autoimmunity and neuroinflammation. Curr Psychiatry Rep. 2019;21(8):78. https://doi.org/10.1007/s11920-019-1062-8.

    Article  PubMed  Google Scholar 

  35. Miguel EC, Stein MC, Rauch SL, O'Sullivan RL, Stern TA, Jenike MA. Obsessive-compulsive disorder in patients with multiple sclerosis. J Neuropsychiatry Clin Neurosci. 1995;7(4):507–10. https://doi.org/10.1176/jnp.7.4.507.

    Article  CAS  PubMed  Google Scholar 

  36. Placidi GP, Boldrini M, Patronelli A, Fiore E, Chiovato L, Perugi G, et al. Prevalence of psychiatric disorders in thyroid diseased patients. Neuropsychobiology. 1998;38(4):222–5. https://doi.org/10.1159/000026545.

    Article  CAS  PubMed  Google Scholar 

  37. Dinn WM, Harris CL, McGonigal KM, Raynard RC. Obsessive-compulsive disorder and immunocompetence. Int J Psychiatry Med. 2001;31(3):311–20. https://doi.org/10.2190/F0BA-BN4F-61KA-UD99.

    Article  CAS  PubMed  Google Scholar 

  38. Hoekstra PJ, Minderaa RB. Tic disorders and obsessive-compulsive disorder: is autoimmunity involved? Int Rev Psychiatry. 2005;17(6):497–502. https://doi.org/10.1080/02646830500382003.

    Article  PubMed  Google Scholar 

  39. Tinelli E, Francia A, Quartuccio EM, Morreale M, Contessa GM, Pascucci S, et al. Structural brain MR imaging changes associated with obsessive-compulsive disorder in patients with multiple sclerosis. AJNR Am J Neuroradiol. 2013;34(2):305–9. https://doi.org/10.3174/ajnr.A3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marazziti D, Mungai F, Masala I, Baroni S, Vivarelli L, Ambrogi F, et al. Normalisation of immune cell imbalance after pharmacological treatments of patients suffering from obsessive-compulsive disorder. J Psychopharmacol. 2009;23(5):567–73. https://doi.org/10.1177/0269881108089605.

    Article  CAS  PubMed  Google Scholar 

  41. Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015;8:447. https://doi.org/10.3389/fnins.2014.00447.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dunn AJ. Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res. 2006;6(1-2):52–68. https://doi.org/10.1016/j.cnr.2006.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229. https://doi.org/10.1016/j.neuroscience.2013.04.060.

    Article  CAS  PubMed  Google Scholar 

  44. Pauls DL, Abramovitch A, Rauch SL, Geller DA. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci. 2014;15(6):410–24. https://doi.org/10.1038/nrn3746.

    Article  CAS  PubMed  Google Scholar 

  45. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–12. https://doi.org/10.1038/nrn3722.

    Article  CAS  PubMed  Google Scholar 

  46. Rodríguez N, Morer A, González-Navarro EA, Serra-Pages C, Boloc D, Torres T, et al. Inflammatory dysregulation of monocytes in pediatric patients with obsessive-compulsive disorder. J Neuroinflammation. 2017;14(1):261. https://doi.org/10.1186/s12974-017-1042-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012;53(1-3):41–57. https://doi.org/10.1007/s12026-012-8297-3.

    Article  CAS  PubMed  Google Scholar 

  48. Ziegler-Heitbrock L, Hofer TP. Toward a refined definition of monocyte subsets. Front Immunol. 2013;4:23. https://doi.org/10.3389/fimmu.2013.00023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Subbanna M, Shivakumar V, Jose D, Venkataswamy M, Debnath M, Ravi V, et al. Reduced T cell immunity in unmedicated, comorbidity-free obsessive-compulsive disorder: an immunophenotyping study. J Psychiatr Res. 2021;137:521–4. https://doi.org/10.1016/j.jpsychires.2021.03.035.

    Article  PubMed  Google Scholar 

  50. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62. https://doi.org/10.1146/annurev.immunol.21.120601.141122.

    Article  CAS  PubMed  Google Scholar 

  51. Askenasy N, Kaminitz A, Yarkoni S. Mechanisms of T regulatory cell function. Autoimmun Rev. 2008;7(5):370–5. https://doi.org/10.1016/j.autrev.2008.03.001.

    Article  CAS  PubMed  Google Scholar 

  52. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl (70):373-381. https://doi.org/10.1007/978-3-211-45295-0_57

  53. Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22(5):347–52. https://doi.org/10.1093/intimm/dxq030.

    Article  CAS  PubMed  Google Scholar 

  54. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57. https://doi.org/10.1038/ni.3153; Erratum in: Nat Immunol. 2017 Oct 18;18(11):1271

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka T, Narazaki M, Masuda K, Kishimoto T. Regulation of IL-6 in immunity and diseases. Adv Exp Med Biol. 2016;941:79–88. https://doi.org/10.1007/978-94-024-0921-5_4.

    Article  CAS  PubMed  Google Scholar 

  56. Jose D, Dinakaran D, Shivakumar V, Subbanna M, Reddy YCJ, Venkatasubramanian G, et al. Plasma IL-6 levels in unmedicated, comorbidity free obsessive-compulsive disorder. Int J Psychiatry Clin Pract. 2021;25(4):437–40. https://doi.org/10.1080/13651501.2021.1937657.

    Article  CAS  PubMed  Google Scholar 

  57. Rao NP, Venkatasubramanian G, Ravi V, Kalmady S, Cherian A, Yc JR. Plasma cytokine abnormalities in drug-naïve, comorbidity-free obsessive-compulsive disorder. Psychiatry Res. 2015;229(3):949–52. https://doi.org/10.1016/j.psychres.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  58. Konuk N, Tekin IO, Ozturk U, Atik L, Atasoy N, Bektas S, et al. Plasma levels of tumor necrosis factor-alpha and interleukin-6 in obsessive compulsive disorder. Mediators Inflamm. 2007;2007:65704. https://doi.org/10.1155/2007/65704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–32. https://doi.org/10.1182/blood-2010-07-273417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095–147.

    Article  CAS  PubMed  Google Scholar 

  61. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain. 1995;63(3):289–302. https://doi.org/10.1016/0304-3959(95)00186-7.

    Article  PubMed  Google Scholar 

  62. Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett. 2004;361(1-3):184–7. https://doi.org/10.1016/j.neulet.2003.12.007.

    Article  CAS  PubMed  Google Scholar 

  63. Clark AK, D'Aquisto F, Gentry C, Marchand F, McMahon SB, Malcangio M. Rapid co-release of interleukin 1beta and caspase 1 in spinal cord inflammation. J Neurochem. 2006;99(3):868–80. https://doi.org/10.1111/j.1471-4159.2006.04126.x.

    Article  CAS  PubMed  Google Scholar 

  64. Thacker MA, Clark AK, Marchand F, McMahon SB. Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg. 2007;105(3):838–47. https://doi.org/10.1213/01.ane.0000275190.42912.37.

    Article  PubMed  Google Scholar 

  65. Karagüzel EÖ, Arslan FC, Uysal EK, Demir S, Aykut DS, Tat M, et al. Blood levels of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha and cognitive functions in patients with obsessive compulsive disorder. Compr Psychiatry. 2019;89:61–6. https://doi.org/10.1016/j.comppsych.2018.11.013.

    Article  PubMed  Google Scholar 

  66. Monteleone P, Catapano F, Fabrazzo M, Tortorella A, Maj M. Decreased blood levels of tumor necrosis factor-alpha in patients with obsessive-compulsive disorder. Neuropsychobiology. 1998;37(4):182–5. https://doi.org/10.1159/000026500.

    Article  CAS  PubMed  Google Scholar 

  67. Denys D, Fluitman S, Kavelaars A, Heijnen C, Westenberg H. Decreased TNF-alpha and NK activity in obsessive-compulsive disorder. Psychoneuroendocrinology. 2004;29(7):945–52. https://doi.org/10.1016/j.psyneuen.2003.08.008.

    Article  CAS  PubMed  Google Scholar 

  68. O'Malley WE, Achinstein B, Shear MJ. Journal of the National Cancer Institute, vol. 29, 1962: action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated with Serratia marcescens polysaccharide, and induced tolerance. Nutr Rev. 1988;46(11):389–91. https://doi.org/10.1111/j.1753-4887.1988.tb05376.x.

    Article  CAS  PubMed  Google Scholar 

  69. Hayashi K, Piras V, Tabata S, Tomita M, Selvarajoo K. A systems biology approach to suppress TNF-induced proinflammatory gene expressions. Cell Commun Signal. 2013;11:84. https://doi.org/10.1186/1478-811X-11-84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol. 2003;25(2):115–21. https://doi.org/10.1002/gepi.10252.

    Article  PubMed  Google Scholar 

  71. Haddy N, Sass C, Maumus S, Marie B, Droesch S, Siest G, et al. Biological variations, genetic polymorphisms and familial resemblance of TNF-alpha and IL-6 concentrations: STANISLAS cohort. Eur J Hum Genet. 2005;13(1):109–17. https://doi.org/10.1038/sj.ejhg.5201294.

    Article  CAS  PubMed  Google Scholar 

  72. Çolak Sivri R, Bilgiç A, Kılınç İ. Cytokine, chemokine and BDNF levels in medication-free pediatric patients with obsessive-compulsive disorder. Eur Child Adolesc Psychiatry. 2018;27(8):977–84. https://doi.org/10.1007/s00787-017-1099-3.

    Article  PubMed  Google Scholar 

  73. Gray SM, Bloch MH. Systematic review of proinflammatory cytokines in obsessive-compulsive disorder. Curr Psychiatry Rep. 2012;14(3):220–8. https://doi.org/10.1007/s11920-012-0272-0.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cavedini P, Gorini A, Bellodi L. Understanding obsessive-compulsive disorder: focus on decision making. Neuropsychol Rev. 2006;16(1):3–15. https://doi.org/10.1007/s11065-006-9001-y.

    Article  PubMed  Google Scholar 

  75. de Geus F, Denys DA, Sitskoorn MM, Westenberg HG. Attention and cognition in patients with obsessive-compulsive disorder. Psychiatry Clin Neurosci. 2007;61(1):45–53. https://doi.org/10.1111/j.1440-1819.2007.01609.x.

    Article  PubMed  Google Scholar 

  76. Leckman JF, Katsovich L, Kawikova I, Lin H, Zhang H, Krönig H, et al. Increased serum levels of interleukin-12 and tumor necrosis factor-alpha in Tourette’s syndrome. Biol Psychiatry. 2005;57(6):667–73. https://doi.org/10.1016/j.biopsych.2004.12.004.

    Article  CAS  PubMed  Google Scholar 

  77. Zúñiga J, Vargas-Alarcón G, Hernández-Pacheco G, Portal-Celhay C, Yamamoto-Furusho JK, Granados J. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with systemic lupus erythematosus (SLE). Genes Immun. 2001;2(7):363–6. https://doi.org/10.1038/sj.gene.6363793.

    Article  PubMed  Google Scholar 

  78. Fontenelle LF, Barbosa IG, Luna JV, de Sousa LP, Abreu MN, Teixeira AL. A cytokine study of adult patients with obsessive-compulsive disorder. Compr Psychiatry. 2012;53(6):797–804. https://doi.org/10.1016/j.comppsych.2011.12.007.

    Article  PubMed  Google Scholar 

  79. Scalzo P, Kümmer A, Cardoso F, Teixeira AL. Increased serum levels of soluble tumor necrosis factor-alpha receptor-1 in patients with Parkinson's disease. J Neuroimmunol. 2009;216(1-2):122–5. https://doi.org/10.1016/j.jneuroim.2009.08.001.

    Article  CAS  PubMed  Google Scholar 

  80. Sayyah M, Boostani H, Pakseresht S, Malayeri A. A preliminary randomized double-blind clinical trial on the efficacy of celecoxib as an adjunct in the treatment of obsessive-compulsive disorder. Psychiatry Res. 2011;189(3):403–6. https://doi.org/10.1016/j.psychres.2011.01.019.

    Article  CAS  PubMed  Google Scholar 

  81. Marazziti D, Consoli G, Baroni S, Catena Dell'Osso M. Past, present and future drugs for the treatment of obsessive-compulsive disorder. Curr Med Chem. 2010;17(29):3410–21. https://doi.org/10.2174/092986710793176384.

    Article  CAS  PubMed  Google Scholar 

  82. Marazziti D, Consoli G, Masala I, Catena Dell'Osso M, Baroni S. Latest advancements on serotonin and dopamine transporters in lymphocytes. Mini Rev Med Chem. 2010;10(1):32–40. https://doi.org/10.2174/138955710791112587.

    Article  CAS  PubMed  Google Scholar 

  83. Lestage J, Verrier D, Palin K, Dantzer R. The enzyme indoleamine 2,3-dioxygenase is induced in the mouse brain in response to peripheral administration of lipopolysaccharide and superantigen. Brain Behav Immun. 2002;16(5):596–601. https://doi.org/10.1016/s0889-1591(02)00014-4.

    Article  CAS  PubMed  Google Scholar 

  84. Pacheco R, Gallart T, Lluis C, Franco R. Role of glutamate on T-cell mediated immunity. J Neuroimmunol. 2007;185(1-2):9–19. https://doi.org/10.1016/j.jneuroim.2007.01.003.

    Article  CAS  PubMed  Google Scholar 

  85. Chakrabarty K, Bhattacharyya S, Christopher R, Khanna S. Glutamatergic dysfunction in OCD. Neuropsychopharmacology. 2005;30(9):1735–40. https://doi.org/10.1038/sj.npp.1300733.

    Article  CAS  PubMed  Google Scholar 

  86. Bhattacharyya S, Khanna S, Chakrabarty K, Mahadevan A, Christopher R, Shankar SK. Anti-brain autoantibodies and altered excitatory neurotransmitters in obsessive-compulsive disorder. Neuropsychopharmacology. 2009;34(12):2489–96. https://doi.org/10.1038/npp.2009.77.

    Article  CAS  PubMed  Google Scholar 

  87. van Rossum D, Hanisch UK. Microglia. Metab Brain Dis. 2004;19(3-4):393–411. https://doi.org/10.1023/b:mebr.0000043984.73063.d8.

    Article  PubMed  Google Scholar 

  88. Werry EL, Bright FM, Piguet O, Ittner LM, Halliday GM, Hodges JR, et al. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int J Mol Sci. 2019;20(13):3161. https://doi.org/10.3390/ijms20133161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Frick L, Pittenger C. Microglial dysregulation in OCD, Tourette syndrome, and PANDAS. J Immunol Res. 2016;2016:8606057. https://doi.org/10.1155/2016/8606057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang LY, Chiang JH, Chen SF, Shen YC. Systemic autoimmune diseases are associated with an increased risk of bipolar disorder: a nationwide population-based cohort study. J Affect Disord. 2018;227:31–7. https://doi.org/10.1016/j.jad.2017.10.027.

    Article  PubMed  Google Scholar 

  91. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012:985646. https://doi.org/10.1155/2012/985646.

    Article  CAS  PubMed  Google Scholar 

  92. Hansen N, Luedecke D, Malchow B, Lipp M, Vogelgsang J, Timäus C, et al. Autoantibody-associated psychiatric syndromes in children: link to adult psychiatry. J Neural Transm (Vienna). 2021;128(6):735–47. https://doi.org/10.1007/s00702-021-02354-8.

    Article  PubMed  Google Scholar 

  93. Morer A, Lázaro L, Sabater L, Massana J, Castro J, Graus F. Antineuronal antibodies in a group of children with obsessive-compulsive disorder and Tourette syndrome. J Psychiatr Res. 2008;42(1):64–8. https://doi.org/10.1016/j.jpsychires.2006.09.010.

    Article  PubMed  Google Scholar 

  94. Uguz F, Onder Sonmez E, Sahingoz M, Gokmen Z, Basaran M, Gezginc K, et al. Neuroinflammation in the fetus exposed to maternal obsessive-compulsive disorder during pregnancy: a comparative study on cord blood tumor necrosis factor-alpha levels. Compr Psychiatry. 2014;55(4):861–5. https://doi.org/10.1016/j.comppsych.2013.12.018.

    Article  PubMed  Google Scholar 

  95. Swedo SE, Leonard HL, Garvey M, Mittleman B, Allen AJ, Perlmutter S, et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry. 1998;155(2):264–71. https://doi.org/10.1176/ajp.155.2.264; Erratum in: Am J Psychiatry. 1998 Apr;155(4):578

    Article  CAS  PubMed  Google Scholar 

  96. Swedo SE, Leonard HL, Rapoport JL. The pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) subgroup: separating fact from fiction. Pediatrics. 2004;113(4):907–11. https://doi.org/10.1542/peds.113.4.907.

    Article  PubMed  Google Scholar 

  97. Kirvan CA, Cox CJ, Swedo SE, Cunningham MW. Tubulin is a neuronal target of autoantibodies in Sydenham's chorea. J Immunol. 2007;178(11):7412–21. https://doi.org/10.4049/jimmunol.178.11.7412.

    Article  CAS  PubMed  Google Scholar 

  98. Brimberg L, Benhar I, Mascaro-Blanco A, Alvarez K, Lotan D, Winter C, et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology. 2012;37(9):2076–87. https://doi.org/10.1038/npp.2012.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kirvan CA, Swedo SE, Snider LA, Cunningham MW. Antibody-mediated neuronal cell signaling in behavior and movement disorders. J Neuroimmunol. 2006;179(1-2):173–9. https://doi.org/10.1016/j.jneuroim.2006.06.017.

    Article  CAS  PubMed  Google Scholar 

  100. Martino D, Church A, Giovannoni G. Are antibasal ganglia antibodies important, and clinically useful? Pract Neurol. 2007;7(1):32–41.

    PubMed  Google Scholar 

  101. Dale RC, Brilot F. Autoimmune basal ganglia disorders. J Child Neurol. 2012;27(11):1470–81. https://doi.org/10.1177/0883073812451327.

    Article  PubMed  Google Scholar 

  102. Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9(7):914–20. https://doi.org/10.1038/nm892.

    Article  CAS  PubMed  Google Scholar 

  103. Dale RC, Candler PM, Church AJ, Wait R, Pocock JM, Giovannoni G. Neuronal surface glycolytic enzymes are autoantigen targets in post-streptococcal autoimmune CNS disease. J Neuroimmunol. 2006;172(1-2):187–97. https://doi.org/10.1016/j.jneuroim.2005.10.014.

    Article  CAS  PubMed  Google Scholar 

  104. Singer HS, Giuliano JD, Hansen BH, Hallett JJ, Laurino JP, Benson M, et al. Antibodies against human putamen in children with Tourette syndrome. Neurology. 1998;50(6):1618–24. https://doi.org/10.1212/wnl.50.6.1618.

    Article  CAS  PubMed  Google Scholar 

  105. Kansy JW, Katsovich L, McIver KS, Pick J, Zabriskie JB, Lombroso PJ, et al. Identification of pyruvate kinase as an antigen associated with Tourette syndrome. J Neuroimmunol. 2006;181(1-2):165–76. https://doi.org/10.1016/j.jneuroim.2006.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32. https://doi.org/10.1038/ni1254.

    Article  CAS  PubMed  Google Scholar 

  107. Ruffell B, DeNardo DG, Affara NI, Coussens LM. Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev. 2010;21(1):3–10. https://doi.org/10.1016/j.cytogfr.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  108. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity in inflammation. Cytometry A. 2014;85(1):36–42. https://doi.org/10.1002/cyto.a.22348.

    Article  CAS  PubMed  Google Scholar 

  109. Eyerich S, Zielinski CE. Defining Th-cell subsets in a classical and tissue-specific manner: examples from the skin. Eur J Immunol. 2014;44(12):3475–83. https://doi.org/10.1002/eji.201444891.

    Article  CAS  PubMed  Google Scholar 

  110. Şimşek Ş, Yüksel T, Çim A, Kaya S. Serum cytokine profiles of children with obsessive-compulsive disorder shows the evidence of autoimmunity. Int J Neuropsychopharmacol. 2016;19(8):pyw027. https://doi.org/10.1093/ijnp/pyw027.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Swedo SE, Rapoport JL, Cheslow DL, Leonard HL, Ayoub EM, Hosier DM, et al. High prevalence of obsessive-compulsive symptoms in patients with Sydenham's chorea. Am J Psychiatry. 1989;146(2):246–9. https://doi.org/10.1176/ajp.146.2.246.

    Article  CAS  PubMed  Google Scholar 

  112. Taylor S. Early versus late onset obsessive-compulsive disorder: evidence for distinct subtypes. Clin Psychol Rev. 2011;31(7):1083–100. https://doi.org/10.1016/j.cpr.2011.06.007.

    Article  PubMed  Google Scholar 

  113. Swedo SE. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Mol Psychiatry. 2002;7(Suppl 2):S24–5. https://doi.org/10.1038/sj.mp.4001170.

    Article  PubMed  Google Scholar 

  114. Swedo EA, Leckman JF, Rose NR. From research subgroup to clinical syndrome: modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric). Pediatr Therapeut. 2012;2:1–8. https://doi.org/10.4172/2161-0665.1000113.

    Article  Google Scholar 

  115. Chiarello F, Spitoni S, Hollander E, Matucci Cerinic M, Pallanti S. An expert opinion on PANDAS/PANS: highlights and controversies. Int J Psychiatry Clin Pract. 2017;21(2):91–8. https://doi.org/10.1080/13651501.2017.1285941.

    Article  PubMed  Google Scholar 

  116. Burchi E, Pallanti S. Antibiotics for PANDAS? Limited evidence: review and putative mechanisms of action. Prim Care Companion CNS Disord. 2018;20(3):17r02232. https://doi.org/10.4088/PCC.17r02232.

    Article  PubMed  Google Scholar 

  117. Marazziti D, Buccianelli B, Palermo S, Parra E, Arone A, Beatino MF, et al. The microbiota/microbiome and the gut-brain axis: how much do they matter in psychiatry? Life (Basel). 2021;11(8):760. https://doi.org/10.3390/life11080760.

    Article  CAS  PubMed  Google Scholar 

  118. Turna J, Grosman Kaplan K, Anglin R, Van Ameringen M. “What’s bugging the gut in ocd?” A review of the gut microbiome in obsessive-compulsive disorder. Depress Anxiety. 2016;33(3):171–8. https://doi.org/10.1002/da.22454.

    Article  PubMed  Google Scholar 

  119. Rees JC. Obsessive-compulsive disorder and gut microbiota dysregulation. Med Hypotheses. 2014;82(2):163–6. https://doi.org/10.1016/j.mehy.2013.11.026.

    Article  PubMed  Google Scholar 

  120. Dale RC. Tics and Tourette: a clinical, pathophysiological and etiological review. Curr Opin Pediatr. 2017;29(6):665–73. https://doi.org/10.1097/MOP.0000000000000546.

    Article  CAS  PubMed  Google Scholar 

  121. Robertson MM, Eapen V, Cavanna AE. The international prevalence, epidemiology, and clinical phenomenology of Tourette syndrome: a cross-cultural perspective. J Psychosom Res. 2009;67(6):475–83. https://doi.org/10.1016/j.jpsychores.2009.07.010.

    Article  PubMed  Google Scholar 

  122. Freeman RD, Fast DK, Burd L, Kerbeshian J, Robertson MM, Sandor P. An international perspective on Tourette syndrome: selected findings from 3,500 individuals in 22 countries. Dev Med Child Neurol. 2000;42(7):436–47. https://doi.org/10.1017/s0012162200000839.

    Article  CAS  PubMed  Google Scholar 

  123. Kumar A, Trescher W, Byler D. Tourette syndrome and comorbid neuropsychiatric conditions. Curr Dev Disord Rep. 2016;3(4):217–21. https://doi.org/10.1007/s40474-016-0099-1.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lee WT, Huang HL, Wong LC, Weng WC, Vasylenko T, Jong YJ, et al. Tourette syndrome as an independent risk factor for subsequent sleep disorders in children: a nationwide population-based case-control study. Sleep. 2017;40(3). https://doi.org/10.1093/sleep/zsw072

  125. Martino D, Dale RC, Gilbert DL, Giovannoni G, Leckman JF. Immunopathogenic mechanisms in Tourette syndrome: a critical review. Mov Disord. 2009;24(9):1267–79. https://doi.org/10.1002/mds.22504.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Landau YE, Steinberg T, Richmand B, Leckman JF, Apter A. Involvement of immunologic and biochemical mechanisms in the pathogenesis of Tourette's syndrome. J Neural Transm (Vienna). 2012;119(5):621–6. https://doi.org/10.1007/s00702-011-0739-x.

    Article  CAS  PubMed  Google Scholar 

  127. Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science. 2005;310(5746):317–20. https://doi.org/10.1126/science.1116502.

    Article  CAS  PubMed  Google Scholar 

  128. Worbe Y, Marrakchi-Kacem L, Lecomte S, Valabregue R, Poupon F, Guevara P, et al. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain. 2015;138(Pt 2):472–82. https://doi.org/10.1093/brain/awu311.

    Article  PubMed  Google Scholar 

  129. Zapparoli L, Porta M, Paulesu E. The anarchic brain in action: the contribution of task-based fMRI studies to the understanding of Gilles de la Tourette syndrome. Curr Opin Neurol. 2015;28(6):604–11. https://doi.org/10.1097/WCO.0000000000000261.

    Article  PubMed  Google Scholar 

  130. Singer HS, Szymanski S, Giuliano J, Yokoi F, Dogan AS, Brasic JR, et al. Elevated intrasynaptic dopamine release in Tourette’s syndrome measured by PET. Am J Psychiatry. 2002;159(8):1329–36. https://doi.org/10.1176/appi.ajp.159.8.1329.

    Article  PubMed  Google Scholar 

  131. Buse J, Schoenefeld K, Münchau A, Roessner V. Neuromodulation in Tourette syndrome: dopamine and beyond. Neurosci Biobehav Rev. 2013;37(6):1069–84. https://doi.org/10.1016/j.neubiorev.2012.10.004.

    Article  CAS  PubMed  Google Scholar 

  132. Haugbøl S, Pinborg LH, Regeur L, Hansen ES, Bolwig TG, Nielsen FA, et al. Cerebral 5-HT2A receptor binding is increased in patients with Tourette’s syndrome. Int J Neuropsychopharmacol. 2007;10(2):245–52. https://doi.org/10.1017/S1461145706006559.

    Article  CAS  PubMed  Google Scholar 

  133. Shaikh N, Leonard E, Martin JM. Prevalence of streptococcal pharyngitis and streptococcal carriage in children: a meta-analysis. Pediatrics. 2010;126(3):e557–64. https://doi.org/10.1542/peds.2009-2648.

    Article  PubMed  Google Scholar 

  134. Martino D, Chiarotti F, Buttiglione M, Cardona F, Creti R, Nardocci N, et al. The relationship between group A streptococcal infections and Tourette syndrome: a study on a large service-based cohort. Dev Med Child Neurol. 2011;53(10):951–7. https://doi.org/10.1111/j.1469-8749.2011.04018.x.

    Article  PubMed  Google Scholar 

  135. Mell LK, Davis RL, Owens D. Association between streptococcal infection and obsessive-compulsive disorder, Tourette’s syndrome, and tic disorder. Pediatrics. 2005;116(1):56–60. https://doi.org/10.1542/peds.2004-2058.

    Article  PubMed  Google Scholar 

  136. Murphy TK, Sajid M, Soto O, Shapira N, Edge P, Yang M, et al. Detecting pediatric autoimmune neuropsychiatric disorders associated with streptococcus in children with obsessive-compulsive disorder and tics. Biol Psychiatry. 2004;55(1):61–8. https://doi.org/10.1016/s0006-3223(03)00704-2.

    Article  PubMed  Google Scholar 

  137. Müller N, Riedel M, Förderreuther S, Blendinger C, Abele-Horn M. Tourette's syndrome and mycoplasma pneumoniae infection. Am J Psychiatry. 2000;157(3):481–2. https://doi.org/10.1176/appi.ajp.157.3.481-a.

    Article  PubMed  Google Scholar 

  138. Ercan TE, Ercan G, Severge B, Arpaozu M, Karasu G. Mycoplasma pneumoniae infection and obsessive-compulsive disease: a case report. J Child Neurol. 2008;23(3):338–40. https://doi.org/10.1177/0883073807308714.

    Article  PubMed  Google Scholar 

  139. Riedel M, Straube A, Schwarz MJ, Wilske B, Müller N. Lyme disease presenting as Tourette’s syndrome. Lancet. 1998;351(9100):418–9. https://doi.org/10.1016/S0140-6736(05)78357-4.

    Article  CAS  PubMed  Google Scholar 

  140. Krause D, Matz J, Weidinger E, Wildenauer A, Obermeier M, Riedel M, et al. Association between intracellular infectious agents and Tourette’s syndrome. Eur Arch Psychiatry Clin Neurosci. 2010;260(4):359–63. https://doi.org/10.1007/s00406-009-0084-3.

    Article  PubMed  Google Scholar 

  141. Matz J, Krause DL, Dehning S, Riedel M, Gruber R, Schwarz MJ, et al. Altered monocyte activation markers in Tourette's syndrome: a case-control study. BMC Psychiatry. 2012;12:29. https://doi.org/10.1186/1471-244X-12-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Müller N. Anti-inflammatory therapy with a COX-2 inhibitor in Tourette's syndrome. Inflammopharmacology. 2004;12(3):271–5. https://doi.org/10.1163/1568560042342338.

    Article  PubMed  Google Scholar 

  143. Cohen B, Preuss CV. Celecoxib. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2021.

    Google Scholar 

  144. Huys D, Hardenacke K, Poppe P, Bartsch C, Baskin B, Kuhn J. Update on the role of antipsychotics in the treatment of Tourette syndrome. Neuropsychiatr Dis Treat. 2012;8:95–104. https://doi.org/10.2147/NDT.S12990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pringsheim T, Okun MS, Müller-Vahl K, Martino D, Jankovic J, Cavanna AE, et al. Practice guideline recommendations summary: treatment of tics in people with Tourette syndrome and chronic tic disorders. Neurology. 2019;92(19):896–906. https://doi.org/10.1212/WNL.0000000000007466.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Singer HS, Wong DF, Brown JE, Brandt J, Krafft L, Shaya E, et al. Positron emission tomography evaluation of dopamine D-2 receptors in adults with Tourette syndrome. Adv Neurol. 1992;58:233–9.

    CAS  PubMed  Google Scholar 

  147. Gunther J, Tian Y, Stamova B, Lit L, Corbett B, Ander B, et al. Catecholamine-related gene expression in blood correlates with tic severity in Tourette syndrome. Psychiatry Res. 2012;200(2-3):593–601. https://doi.org/10.1016/j.psychres.2012.04.034.

    Article  CAS  PubMed  Google Scholar 

  148. Kipnis J, Cardon M, Avidan H, Lewitus GM, Mordechay S, Rolls A, et al. Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+CD25+ regulatory T-cell activity: implications for neurodegeneration. J Neurosci. 2004;24(27):6133–43. https://doi.org/10.1523/JNEUROSCI.0600-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tian Y, Gunther JR, Liao IH, Liu D, Ander BP, Stamova BS, et al. GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study. Brain Res. 2011;1381:228–36. https://doi.org/10.1016/j.brainres.2011.01.026.

    Article  CAS  PubMed  Google Scholar 

  150. Zhou FM, Wilson CJ, Dani JA. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol. 2002;53(4):590–605. https://doi.org/10.1002/neu.10150.

    Article  CAS  PubMed  Google Scholar 

  151. Rane MJ, Gozal D, Butt W, Gozal E, Pierce WM Jr, Guo SZ, et al. γ-amino butyric acid type B receptors stimulate neutrophil chemotaxis during ischemia-reperfusion. J Immunol. 2005;174(11):7242–9. https://doi.org/10.4049/jimmunol.174.11.7242.

    Article  CAS  PubMed  Google Scholar 

  152. Lennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, et al. Transcriptome analysis of the human striatum in Tourette syndrome. Biol Psychiatry. 2016;79(5):372–82. https://doi.org/10.1016/j.biopsych.2014.07.018.

    Article  CAS  PubMed  Google Scholar 

  153. Kumar A, Williams MT, Chugani HT. Evaluation of basal ganglia and thalamic inflammation in children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection and Tourette syndrome: a positron emission tomographic (PET) study using 11C-[R]-PK11195. J Child Neurol. 2015;30(6):749–56. https://doi.org/10.1177/0883073814543303.

    Article  PubMed  Google Scholar 

  154. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. 2013;16(5):543–51. https://doi.org/10.1038/nn.3358.

    Article  CAS  PubMed  Google Scholar 

  155. Borish LC, Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol. 2003;111(2 Suppl):S460–75. https://doi.org/10.1067/mai.2003.108.

    Article  CAS  PubMed  Google Scholar 

  156. Yeon SM, Lee JH, Kang D, Bae H, Lee KY, Jin S, Kim JR, et al. A cytokine study of pediatric Tourette’s disorder without obsessive-compulsive disorder. Psychiatry Res. 2017;247:90–6. https://doi.org/10.1016/j.psychres.2016.11.005.

    Article  CAS  PubMed  Google Scholar 

  157. Gabbay V, Coffey BJ, Guttman LE, Gottlieb L, Katz Y, Babb JS, et al. A cytokine study in children and adolescents with Tourette's disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(6):967–71. https://doi.org/10.1016/j.pnpbp.2009.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Brambilla F, Perna G, Bellodi L, Arancio C, Bertani A, Perini G, et al. Plasma interleukin-1β and tumor necrosis factor concentrations in obsessive-compulsive disorders. Biol Psychiatry. 1997;42(11):976–81. https://doi.org/10.1016/s0006-3223(96)00495-7.

    Article  CAS  PubMed  Google Scholar 

  159. Pingle SK, Tumane RG, Jawade AA. Neopterin: biomarker of cell-mediated immunity and potent usage as biomarker in silicosis and other occupational diseases. Indian J Occup Environ Med. 2008;12(3):107–11. https://doi.org/10.4103/0019-5278.44690.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hoekstra PJ, Anderson GM, Troost PW, Kallenberg CG, Minderaa RB. Plasma kynurenine and related measures in tic disorder patients. Eur Child Adolesc Psychiatry. 2007;16(Suppl 1):71–7. https://doi.org/10.1007/s00787-007-1009-1; Erratum in: Eur Child Adolesc Psychiatry. 2007 Dec;16(8):537

    Article  PubMed  Google Scholar 

  161. Yildirim Z, Karabekiroglu K, Yildiran A, Celiksoy MH, Artukoglu B, Baykal S, et al. An examination of the relationship between regulatory T cells and symptom flare-ups in children and adolescents diagnosed with chronic tic disorder and Tourette syndrome. Nord J Psychiatry. 2021;75(1):18–24. https://doi.org/10.1080/08039488.2020.1779808.

    Article  PubMed  Google Scholar 

  162. Dominguez-Villar M. Hafler DA (2018) Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665–73. https://doi.org/10.1038/s41590-018-0120-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kawikova I, Leckman JF, Kronig H, Katsovich L, Bessen DE, Ghebremichael M, et al. Decreased numbers of regulatory T cells suggest impaired immune tolerance in children with Tourette syndrome: a preliminary study. Biol Psychiatry. 2007;61(3):273–8. https://doi.org/10.1016/j.biopsych.2006.06.012.

    Article  CAS  PubMed  Google Scholar 

  164. Ferrari M, Termine C, Franciotta D, Castiglioni E, Pagani A, Lanzi G, et al. Dopaminergic receptor D5 mRNA expression is increased in circulating lymphocytes of Tourette syndrome patients. J Psychiatr Res. 2008;43(1):24–9. https://doi.org/10.1016/j.jpsychires.2008.01.014.

    Article  PubMed  Google Scholar 

  165. Möller JC, Tackenberg B, Heinzel-Gutenbrunner M, Burmester R, Oertel WH, Bandmann O, et al. Immunophenotyping in Tourette syndrome – a pilot study. Eur J Neurol. 2008;15(7):749–53. https://doi.org/10.1111/j.1468-1331.2008.02159.x.

    Article  PubMed  Google Scholar 

  166. Marzio R, Mauël J, Betz-Corradin S. CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol. 1999;21(3):565–82. https://doi.org/10.3109/08923979909007126.

    Article  CAS  PubMed  Google Scholar 

  167. Green DR, Droin N, Pinkoski M. Activation-induced cell death in T cells. Immunol Rev. 2003;193:70–81. https://doi.org/10.1034/j.1600-065X.2003.00051.x.

    Article  CAS  PubMed  Google Scholar 

  168. Pranzatelli MR, Tate ED, Allison TJ. Case-control, exploratory study of cerebrospinal fluid chemokines/cytokines and lymphocyte subsets in childhood Tourette syndrome with positive streptococcal markers. Cytokine. 2017;96:49–53. https://doi.org/10.1016/j.cyto.2017.03.003.

    Article  CAS  PubMed  Google Scholar 

  169. Perlmutter SJ, Leitman SF, Garvey MA, Hamburger S, Feldman E, Leonard HL, et al. Therapeutic plasma exchange and intravenous immunoglobulin for obsessive-compulsive disorder and tic disorders in childhood. Lancet. 1999;354(9185):1153–8. https://doi.org/10.1016/S0140-6736(98)12297-3.

    Article  CAS  PubMed  Google Scholar 

  170. Murphy TK, Parker-Athill EC, Lewin AB, Storch EA, Mutch PJ. Cefdinir for recent-onset pediatric neuropsychiatric disorders: a pilot randomized trial. J Child Adolesc Psychopharmacol. 2015;25(1):57–64. https://doi.org/10.1089/cap.2014.0010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shalbafan M, Mohammadinejad P, Shariat SV, Alavi K, Zeinoddini A, Salehi M, et al. Celecoxib as an adjuvant to fluvoxamine in moderate to severe obsessive-compulsive disorder: a double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry. 2015;48(4-5):136–40. https://doi.org/10.1055/s-0035-1549929.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Marazziti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marazziti, D. et al. (2023). Obsessive-Compulsive Disorder, PANDAS, and Tourette Syndrome: Immuno-inflammatory Disorders. In: Kim, YK. (eds) Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, vol 1411. Springer, Singapore. https://doi.org/10.1007/978-981-19-7376-5_13

Download citation

Publish with us

Policies and ethics