Skip to main content

Exploring the Potential of Secondary Metabolites from Indigenous Trichoderma spp. for Their Plant Growth Promotion and Disease Suppression Ability in Pulses

  • Chapter
  • First Online:
Rhizosphere Microbes

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 40))

  • 357 Accesses

Abstract

Pulses are an important part of the human diet; it has all the nutritional elements required for the body. Pulses contain various varieties like beans, lentils, peas, green gram, horse gram, and chickpeas. Pulses are rich in protein and are low in fats. This reduces the risk of cardiovascular diseases. The presence of phenols, flavonoids, saponins, oxalates, and enzyme inhibitors is the added health benefit for humans. Bioactive metabolite produced by Trichoderma species plays an important role in interaction with plants and pathogens. These bioactive metabolites have antibiotic properties, which inhibit or kill other organisms. These bioactive metabolites are used for crop protection and as biofertilizers. These bioactive metabolites are also able to induce systemic disease resistance in plants. Trichoderma is well known for its secondary metabolite production ability. The widespread use of secondary metabolites for the control of plant pathogens, plant growth promotion, and induction of host resistance may become popular in the coming years under IPM strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Aoki H, Osawa T, Namiki M, Yamane T, Ashida T (1983) Structure of trichodermaol, antibacterial substance produced in combined culture of Trichoderma sp. with Fusarium oxysporum or Fusarium solani. Chem Lett 6:923–926

    Article  Google Scholar 

  • Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 72:43–46

    Article  CAS  PubMed  Google Scholar 

  • Brian PW, McGowan JC (1945) Viridin. A highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145

    Article  CAS  Google Scholar 

  • Cardoza RE, Hermosa MR, Vizcaino JA, Sanz L, Monte E, Gutierrez S (2005) Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. In: Mellado-Duran E, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, Thiruvananthapuram, p 207

    Google Scholar 

  • Cherif M, Benhamou N (1990) Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma sp. on Fusarium oxysporum f.sp. radicis lycopersici. Phytopathology 80:1406–1414

    Article  CAS  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:503–513

    Article  CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin a: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611

    CAS  Google Scholar 

  • Cutler HG, Himmelsbach DS, Yagen B, Arrendale RF, Jacyno JM, Cole PD, Cox RH (1991a) Koninginin B: a biologically active congener of koninginin a from Trichoderma koningii. J Agric Food Chem 39:977–980

    Article  CAS  Google Scholar 

  • Cutler HG, Jacyno JM, Phillips RS, vonTersch RL, Cole PD, Montemurro N (1991b) Cyclonerodiol from a novel source, Trichoderma koningii: plant growth regulatory activity. Agric Biol Chem 55:243–244

    CAS  Google Scholar 

  • Cutler HG, Cutler SJ, Ross SA, El Sayed K, Dugan FM, Bartlett MG, Hill AA, Hill RA, Parker SR (1999) Koninginin G, a new metabolite from Trichoderma aureoviride. J Nat Prod 62:137–139

    Article  CAS  PubMed  Google Scholar 

  • Deshpande MV (1986) Enzymatic degradation of chitin and its biological applications. J Sci Ind Res 45:273–287

    CAS  Google Scholar 

  • Dickinson JM, Hanson JR, Hitchcock PB, Claydon N (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1(11):1885–1887

    Article  Google Scholar 

  • Donnelly DMX, Sheridan MH (1986) Anthraquinones from Trichoderma polysporum. Phytochemistry 25:2303–2304

    Article  CAS  Google Scholar 

  • Elad Y, Chet I, Boyle P, Henis Y (1983) Parasitism of Trichodermia spp. on Rhizoctonia solani and Sclerotium rolfsii. Scanning electron microscopy and fluorescent microscopy. Phytopathology 73:85–88

    Article  Google Scholar 

  • Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6- substituted 2H-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2009) Symposium on nutrition security for India, issues and way forward-nutrition strategies. Indian National Science Academy, Rome

    Google Scholar 

  • FAOSTAT (2011). http://faostat.fao.org/site/567/Desktop_default.Aspx. Accessed 12 Dec 2016

  • Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides a and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66:423–426

    Article  CAS  PubMed  Google Scholar 

  • Geremia R, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene, Prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  CAS  PubMed  Google Scholar 

  • Ghisalberti EL (2002) Anti-infective agents produced by the hyphomycetes general Trichoderma and Glioclaudium. Curr Med Cem 1:343–374

    CAS  Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804

    Article  CAS  PubMed  Google Scholar 

  • Gloer JB (1997) Environmental and microbial relationships. In: Wicklow DT (ed) The mycota, vol 4. Springer-Verlag, Berlin, p 249

    Google Scholar 

  • Goldman HG, Hayes C, Harman GE (1994) Molecular and cellular biology of biocontrol by Trichoderma spp. Trends Biotechnol 12:478–482

    Article  CAS  PubMed  Google Scholar 

  • Grove JF (1988) Non-macrocyclic trichothecenes. Nat Prod Rep 5(2):187. https://doi.org/10.1039/np9880500187

    Article  CAS  PubMed  Google Scholar 

  • Grove JF (1993) Macrocyclic trichothecenes. Nat Prod Rep 10(5):429. https://doi.org/10.1039/np9931000429

    Article  CAS  Google Scholar 

  • Grove JF (1996) Non-macrocyclic trichothecenes. Part 2. Prog Chem Org Nat Prod 69:1–70

    CAS  Google Scholar 

  • Hanson JR (1995) The viridin family of steroidal antibiotics. Nat Prod Rep 12:381–384

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Hayes CK, Lorito M, Broadway RM, Di-Pietro A, Petebauer C, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum. Purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harris GH, Jones ETT, Meinz MS, Nallin-Omstead M, Helms GL, Bills GF, Zink D, Wilson KE (1993) Isolation and structure elucidation of viridiofungins A, B and C. Tetrahedron Lett 34:5235–5238

    Article  CAS  Google Scholar 

  • Hill RA, Cutler HG, Parker SR (1995) Trichoderma and metabolites as control agents for microbial plant diseases. PCT Int Appl 9520879

    Google Scholar 

  • Hoover R, Ratnayake WS (2002) Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem 78:489–498

    Article  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324

    Article  CAS  Google Scholar 

  • Huang Q, Tezuka Y, Hatanaka Y, Kikuchi T, Nishi A, Tubaki K (1995) Studies on metabolites of mycoparasitic fungi. III. New sesquiterpene alcohol from Trichoderma koningii. Chem Pharm Bull 43:1035–1038

    Article  CAS  Google Scholar 

  • Hussain SA, Noorani R, Qureshi IH (1975) Microbial chemistry. Part I. isolation and characterization of gliotoxin, ergosterol, palmitic acid and mannitol—metabolic products of Trichoderma hamatum Bainier. Pak J Sci Ind Res 18:221–223

    CAS  Google Scholar 

  • Iriti M, Varoni EM (2017) Pulses, healthy and sustainable food sources for feeding the planet. Int J Mol Sci 18:255

    Article  PubMed Central  Google Scholar 

  • Kamal A, Akhtar R, Qureshi AA (1971) Biochemistry of microorganisms. XX. 2,5-Dimethoxybenzoquinone, tartronic acid, itaconic acid, succinic acid, pyrocalciferol, epifriedlinol, lanosta-7,9(11), 24-triene-3-b-21-diol, trichodermene-a, methyl 2,4,6-octatrienecarboxylate, cordycepic acid, Trichoderma metabolic products. Pak J Sci Ind Res 14:71–78

    CAS  Google Scholar 

  • Kishimoto N, Sugihara S, Mochida K, Fujita T (2005) In vitro antifungal and antiviral activities of C- and D-lactone analogs utilized as food flavoring. BiocontrolSci 10:31–36

    Article  CAS  Google Scholar 

  • Landreau A, Pouchus YF, Sallenave-Namont C, Biard JF, Bournard MC, du Pont TR, Mondeguer F, Goulard C, Verbist JF (2002) Combined use of LC/MS and a biological test for rapid identification of marine mycotoxins produced by Trichoderma koningii. J Microbiol Methods 48(2–3):181–194

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Gu QQ, Zhu WM, Cui CB, Fan GT (2005) Trichodermamide a and aspergillazine a, two cytotoxic modified dipeptides from a marine-derived fungus Spicaria elegans. Arch Pharm Res 28:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Macias FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–1200

    Article  CAS  PubMed  Google Scholar 

  • Mandala SM, Thornton RA, Frommer BR, Dreikorn S, Kurtz MB (1997) Viridiofungins, novel inhibitors of sphingolipid synthesis. J Antibiot 50:339–343

    Article  CAS  Google Scholar 

  • Meyer CE (1966) U-21,963, a new antibiotic. II Isolation and characterization. Appl Microbiol 14:511–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra RK, Mishra M, Pandey S, Naimuddin, Saabale PR, Singh B (2020a) DALHANDERMA (IIPRTh-31): multi-trait Trichoderma based formulation for management of wilt diseases of pulse crops. J Food Legum 33(2):123–126

    Google Scholar 

  • Mishra RK, Pandey S, Mishra M, Rathore US, Naimuddin, Kumar K, Singh B (2020b) Assessment of biocontrol potential of Trichoderma isolates against wilt in pulses. J Food Legum 33(1):48–52

    Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma—a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Nicol S (1991) Life after death for empty shells. New Sci 129:46–48

    CAS  Google Scholar 

  • Parker RS, Cutler HG, Jacyno JM, Hill RA (1997) Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776

    Article  CAS  Google Scholar 

  • Pyke TR, Dietz A (1966) U-21,963, a new antibiotic. I. Discovery and biological activity. Appl Microbiol 14:506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenbach H, Forche E, Gerth K, Irschik H, Kunze B,Sasse F, Hoefle G, Augustiniak H, Bedorf N (1990) Fungicidal steroids from Trichoderma. Ger Offen, DE Patent 3823068, Accessed 11 Jan 1990

    Google Scholar 

  • Sawa R, Mori Y, Iinuma H, Naganawa H, Hamada M, Yoshida S, FurutaniH KY, Fuwa T, Takeuchi T (1994) Harzianic acid, a new antimicrobial antibiotic from a fungus. J Antibiot 47:731–732

    Article  CAS  Google Scholar 

  • Scarselletti R, Faull JL (1994) In vitro activity of6-pentyl-a-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209

    Article  CAS  Google Scholar 

  • Simon A, Dunlop RW, Ghisalberti EL, Sivasithamparam K (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264

    Article  CAS  Google Scholar 

  • Slater GP, Haskins RH, Hogge LR, Nesbitt LR (1967) Metabolic products from a Trichoderma viride. Can J Chem 45:92–96

    Article  CAS  Google Scholar 

  • Sparapano L, Evidente A (1995) Studies on structure-activity relationship of seiridins phytotoxins produced by three species of Seiridium. Nat Toxins 3(3):166–173. https://doi.org/10.1002/nt.2620030308

    Article  CAS  PubMed  Google Scholar 

  • Strunz GM, Ren WY, Stillwell MA, Valenta Z (1977) Structure and synthesis of a new cyclopentenone derivative from Trichoderma album. Can J Chem 55:2610–2612

    Article  CAS  Google Scholar 

  • Tronsmo A, Klemsdal SS, Hayes CK, Lorito M, Harman GE (1993) The role of hydrolytic enzymes produced by Trichoderma harzianum in biological control of plant diseases. In: Suominen P, Reinikainen T (eds) Trichoderma reesei cellulases and other hydrolases, enzyme structure, biochemistry, genetic and applications, vol 8. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, pp 159–168

    Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal control agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CAB International, New York, pp 311–346. ISBN 0-85199-356-7

    Google Scholar 

  • Vicente MF, Cabello A, Platas G, Basilio A, Diez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Pelaez F (2001) Antimicrobial activity of ergokonin a from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Watanabe N, Yamagishi M, Mizutani T, Kondoh H, Omura S, Hanada K, Kushida K (1990) CAF-603: a new antifungal carotane sesquiterpene. Isolation and structure elucidation. J Nat Prod 53:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Wicklow DT (1998) In: Pirosynzki KA, Hawksworth D (eds) Coevolution of fungi with plants and animals. Academic Press, New York, p 174

    Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to pseudomonas syringae pv. Lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, R.K., Pandey, S., Mishra, M., Rathore, U.S., Singh, U.B. (2022). Exploring the Potential of Secondary Metabolites from Indigenous Trichoderma spp. for Their Plant Growth Promotion and Disease Suppression Ability in Pulses. In: Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K., Sharma, S.K. (eds) Rhizosphere Microbes. Microorganisms for Sustainability, vol 40. Springer, Singapore. https://doi.org/10.1007/978-981-19-5872-4_12

Download citation

Publish with us

Policies and ethics