Skip to main content

Phase Transformation Analysis of Fe-Substituted Cr2O3 Nanoparticles Using Rietveld Refinement

  • Conference paper
  • First Online:
Advances in Functional and Smart Materials

Abstract

In this present report, effect on iron (Fe) substitution on the structural properties of chromium oxide (Cr2O3) nanoparticles has been investigated in detail. Simple and cost-effective co-precipitation technique was used to synthesize Fe-substituted Cr2O3 nanoparticles at various Fe-concentrations. Structural properties of as-prepared nanoparticles were examined using X-ray diffraction (XRD) technique and Fourier transform infrared (FTIR) spectroscopy. XRD results demonstrated that crystal structure remains single phase up to x = 0.20 of Fe-content. Single-phase Cr2O3 nanoparticles crystallize in rhombohedral crystal structure with space group. Beyond x = 0.20 of Fe-content into Cr2O3 nanoparticles, formation of secondary phase in the form of iron oxide (Fe2O3) has been initiated. Both Cr2O3 and Fe2O3 materials crystallize in same corundum structure with same space group. Hence, we have performed Rietveld refinement for detailed structural study of multi-phase compound. In a multi-component system, phase fraction has also been determined using Rietveld refinement method. FTIR spectra also complement the XRD results and demonstrated the Cr–O and Fe–O vibration band in octahedral environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh J, Kumar R, Verma V, Kumar R (2020) Role of Ni2+ substituent on the structural, optical and magnetic properties of chromium oxide (Cr2-xNixO3) nanoparticles. Ceram Int 46:24071–24082. https://doi.org/10.1016/j.ceramint.2020.06.185

    Article  Google Scholar 

  2. Bhuvana S, Ramalingam HB, Vadivel K, Kumar ER, Ayesh AI (2016) Effect of Zn and Ni substitution on structural, morphological and magnetic properties of tin oxide nanoparticles. J Magn Magn Mater 419:429–434. https://doi.org/10.1016/j.jmmm.2016.07.004

  3. Kaushik A, Dalela B, Kumar S, Alvi PA, Dalela S (2013) Role of Co doping on structural, optical and magnetic properties of TiO2. J Alloy Compd 552:274–278. https://doi.org/10.1016/j.jallcom.2012.10.076

    Article  Google Scholar 

  4. Srinet G, Kumar R, Sajal V (2013) Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles. J Appl Phys 114. https://doi.org/10.1063/1.4813868

  5. Abdullah MM, Rajab FM, Al-Abbas SM (2014) Structural and optical characterization of Cr2O3 nanostructures: evaluation of its dielectric properties. AIP Adv 4:027121. https://doi.org/10.1063/1.4867012

    Article  Google Scholar 

  6. Cao H, Qiu X, Liang Y, Zhao M, Zhu Q (2006) Sol-gel synthesis and photoluminescence of p-type semiconductor Cr2O3 nanowires. Appl Phys Lett 88:241112. https://doi.org/10.1063/1.2213204

    Article  Google Scholar 

  7. Bhardwaj P, Singh J, Kumar R, Kumar R, Verma V (2021) Structural, optical and magnetic characterization of Ni2+ ions doped chromium oxide (Cr2O3) nanoparticles. Solid State Sci 115:1–13. https://doi.org/10.1016/j.solidstatesciences.2021.106581

    Article  Google Scholar 

  8. Tobia D, Winkler E, Zysler RD, Granada M, Troiani HE (2008) Size dependence of the magnetic properties of antiferromagnetic Cr2O3 nanoparticles, physical review B-condensed matter and materials. Physics 78:1–7. https://doi.org/10.1103/PhysRevB.78.104412

    Article  Google Scholar 

  9. Carey JJ, Legesse M, Nolan M (2016) Low valence cation doping of bulk Cr2O3: charge compensation and oxygen vacancy formation. J Phys Chem C 120:19160–19174. https://doi.org/10.1021/acs.jpcc.6b05575

    Article  Google Scholar 

  10. Singh J, Kumar R, Verma V, Kumar R (2021) Structural and optoelectronic properties of epitaxial Ni-substituted Cr2O3 thin films for p-type TCO applications. Mater Sci Semicond Process 123:105483. https://doi.org/10.1016/j.mssp.2020.105483

    Article  Google Scholar 

  11. Singh J, Verma V, Kumar R, Sharma S, Kumar R (2019) Effect of structural and thermal disorder on the optical band gap energy of Cr2O3 nanoparticles. Mater Res Expr 6:85039. https://doi.org/10.1088/2053-1591/ab195c

    Article  Google Scholar 

  12. Roy M, Ghosh S, Naskar MK (2015) Solvothermal synthesis of Cr2O3 nanocubes via template-free route. Mater Chem Phys 159:101–106. https://doi.org/10.1016/j.matchemphys.2015.03.058

    Article  Google Scholar 

  13. Rodriguez-Carvajal J (1997) Program for Rietveld Refinement. Full Prof, LLB JRC, Version 3.7

    Google Scholar 

  14. Mote V, Purushotham Y, Dole B (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:2–9. https://doi.org/10.1186/2251-7235-6-6

  15. Rana AK, Kumar Y, Rajput P, Jha SN, Bhattacharyya D, Shirage PM (2017) Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure. ACS Appl Mater Interfaces 9:7691–7700. https://doi.org/10.1021/acsami.6b12616

    Article  Google Scholar 

  16. Muthukumaran S, Gopalakrishnan R (2012) Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater 34:1946–1953. https://doi.org/10.1016/j.optmat.2012.06.004

    Article  Google Scholar 

  17. Kulal PM, Dubal DP, Lokhande CD, Fulari VJ (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloy Compd 509:2567–2571. https://doi.org/10.1016/j.jallcom.2010.11.091

    Article  Google Scholar 

  18. Ramesh R, Ashok K, Bhalero GM, Ponnusamy S, Muthamizhchelvan C (2010) Synthesis and properties of α-Fe2O3 nanorods. Cryst Res Technol 45:965–968. https://doi.org/10.1002/crat.201000140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarnail Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, J., Bhardwaj, P., Kumar, R., Dixit, S., Kumar, K., Verma, V. (2023). Phase Transformation Analysis of Fe-Substituted Cr2O3 Nanoparticles Using Rietveld Refinement. In: Prakash, C., Singh, S., Krolczyk, G. (eds) Advances in Functional and Smart Materials. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-4147-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-4147-4_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-4146-7

  • Online ISBN: 978-981-19-4147-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics