Skip to main content

Plant–Rhizospheric Microbe Interactions: Enhancing Plant Growth and Improving Soil Biota

  • Chapter
  • First Online:
Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability

Abstract

Microbes present in the rhizosphere change the soil environment. Rhizosphere microorganisms use mucilage and exudates secreted by plant roots and these plant roots influence the microbial diversity and their function. Roots release various flavonoids, organic acids, and auxin monomers that are involved in the regulation of plant–microbe interactions. Methyl salicylate produced by the plant roots triggers colonization of Bacillus subtilis. Beneficial microbes in the rhizosphere respond to the root exudates by tuning their transcriptional machinery toward traits associated with mobility, chemotaxis, biofilm formation, and polysaccharide degradation. Once beneficial microbes are established in the rhizosphere, they stimulate the biofilm formation on the root surface. Researches on below-ground microbial community unveil various important interactions occurring between plants and microbes. These interactions can be harnessed for the betterment of agriculture to enhance crop productivity in stressed areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achatz B, von Rüden S, Andrade D, Neumann E, Pons-Kühnemann J, Kogel KH et al (2010) Root colonization by Piriformosporaindica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 333:59–70. https://doi.org/10.1007/s11104-010-0319-0

    Article  CAS  Google Scholar 

  • Akbaba M, Ozaktan H (2018) Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egypt J biological Pest Control 28(1):14

    Article  Google Scholar 

  • Alori ET, Dare MO, Babalola OO (2017) Microbial inoculants for soil quality and plant fitness. In: Lichtfouse E (ed) Sustainable agriculture review. Springer, Berlin, pp 181–308. https://doi.org/10.1007/978-3-319-48006-0

    Chapter  Google Scholar 

  • Antoun H, Kloepper J (2001) Plant growth promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic Press, pp 1477–1480. https://doi.org/10.1006/rwgn.2001.1636. ISBN 9780122270802, https://www.sciencedirect.com/science/article

    Chapter  Google Scholar 

  • Anusha BG, Gopalakrishnan S, Naik MK, Sharma M (2019) Evaluation of Streptomycesspp.andBacillus spp. for biocontrol of Fusarium wilt in chickpea (Cicer arietinum L.). Arch Phytopathol Plant Protect 52(5–6):417–442

    Article  CAS  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ et al (2013a) Underground signals carried through common mycelial networks warnneighbouring plants of aphid attack. Ecol Lett 16(7):835–843

    Article  PubMed  Google Scholar 

  • Babikova Z, Johnson D, Bruce T, Pickett JA, Gilbert L (2013b) How rapid is aphid-induced signal transfer between plants via common mycelial networks? Commun Integr Biol 6(6):e25904

    Article  PubMed  PubMed Central  Google Scholar 

  • Barea JM, Andrade G, Bianciotto V et al (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64(6):2304–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I (2014) Bacterial endophytic communities in the grapevine depend on pest management. PLoS One 9:e112763. https://doi.org/10.1371/journal.pone.011276

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciccillo F, Fiore A, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (2002) Effects of two different application methods of Burkholderiaambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environ Microbiol 4:238–245. https://doi.org/10.1046/j.1462-2920.2002.00291.x

    Article  PubMed  Google Scholar 

  • Corrêa BO, Schafer JT, Moura AB (2014) Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean. Biol Control 72:71–75

    Article  Google Scholar 

  • Daranas N, Roselló G, Cabrefiga J, Donati I, Francés J, Badosa E, Spinelli F, Montesinos E, Bonaterra A (2019) Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Ann Appl Biol 174(1):92–105

    Article  PubMed  Google Scholar 

  • Deshwal VK, Vig K, Singh SB, Gupta N, Agarwal S, Patil S (2011) Influence of the co-inoculation rhizobium SR-9 and pseudomonas SP-8 on growth of soybean crop. Dev Microbiol Mol Biol 2:67–74

    Google Scholar 

  • Gang S, Saraf M, Waite CJ, Buck M, Schumacher J (2018) Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant Soil 424(1–2):273–288. https://doi.org/10.1007/s11104-017-3440-5

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW et al (2016) Piriformosporaindica: potential and significance in plant stress tolerance. Front Microbiol 7:332. https://doi.org/10.3389/fmicb.2016.00332

    Article  PubMed  PubMed Central  Google Scholar 

  • Habtegebriel B, Boydom A (2017) Biocontrol of faba bean black root rot caused by Fusarium solani using seed dressing and soil application of Trichoderma harzianum. J Biol Control 30(3):169–176. https://doi.org/10.18311/jbc/2016/15593

    Article  Google Scholar 

  • Hendgen M, Hoppe B, Döring J, Friedel M, Kauer R, Frisch M et al (2018) Effects of different management regimes on microbial biodiversity in vineyard soils. Sci Rep 8:9393

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanthaiah K, Velu RK (2019) Characterization of the bioactive metabolite from a plant growth promoting rhizobacteria Pseudomonas aeruginosa VRKK1 and exploitation of antibacterial behaviour against Xanthomonas campestris a causative agent of bacterial blight disease in cowpea. Arch Phytopathol Plant Protect:1–18

    Google Scholar 

  • Kayim M, Yones AM, Endes A (2018) Biocontrol of Alternaria alternata causing leaf spot disease on faba bean (Viciafaba L.) using some Trichoderma harzianum isolates under in vitro condition. Harran Tarımve Gıda Bilimleri Dergisi 22(2):169–178

    Article  Google Scholar 

  • Khater MMMN (2010) Biological control of SclerotiniaSclerotiorum- the causal agent of white basal rot disease of beans (Phaseolus vulgaris) (Doctoral dissertation, Alexandria University)

    Google Scholar 

  • Kuchlan MK, Kuchlan P, Husain SM (2017) Effect of foliar application of growth activator, promoter and antioxidant on seed quality of soybean

    Google Scholar 

  • Kushwaha SK, Kumar S, Chaudhary B (2018) Efficacy of Trichoderma against Sclerotium rolfsii causing collar rot disease of lentil under in vitro conditions. J Appl Nat Sci 10(1):307–312

    Article  CAS  Google Scholar 

  • Legay N, Piton G, Arnoldi C, Bernard L, Binet M-N, Mouhamadou B, Pommier T, Lavorel S, Foulquier A, Clément J-C (2018) Soil legacy effects of climatic stress management and plant functional composition on microbial communities influence the response of Lolium perenne to a new drought event. Plant Soil 424(1–2):233–254. https://doi.org/10.1007/s11104-017-3403-x

    Article  CAS  Google Scholar 

  • Liu N, Xu S, Yao X, Zhang G, Mao W, Hu Q, Feng Z, Gong Y (2016) Studies on the control of ascochyta blight in field peas (Pisumsativum L.) caused by Ascochytapinodes in Zhejiang Province, China. Front Microbiol 7:481

    PubMed  PubMed Central  Google Scholar 

  • Mayo S, Gutierrez S, Malmierca MG, Lorenzana A, Campelo MP, Hermosa R, Casquero PA (2015) Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front Plant Sci 6:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra RK, Mishra M, Pandey S, Naimuddin, Saabale PR, Singh B (2020) DALHANDERMA (IIPRTh-31): Multi-trait Trichoderma based formulation for management of wilt diseases of pulse crops. J Food Legumes 33(2):123–126

    Google Scholar 

  • Mishra RK, Pandey S, Mishra M, Rathore US, Naimuddin KK, Singh B (2020b) Assessment of biocontrol potential of Trichoderma isolates against wilt in pulses. J Food Legumes 33(1):48–52

    Google Scholar 

  • Monsanto BioAg (2016). https://www.efeedlink.com/contents/12-28-2016/c5141bdd-e8a4-4f05-9502-279a7add15ff-0003.html. Accessed 10 Dec 2020

  • Nirmalkar VK, Said PP, Kaushik DK (2017) Efficacy of fungicides and bio-agents against Pyriculariagresia in paddy and yield gap analysis thought frontline demonstration. Int J Curr Microbiol App Sci 6(4):2338–2346

    Article  CAS  Google Scholar 

  • Omomowo IO, Fadiji AE, Omomowo OI (2018) Assessment of bio-efficacy of Glomusversiforme and Trichodermaharzianum in inhibiting powdery mildew disease and enhancing the growth of cowpea. Ann Agric Sci 63(1):9–17

    Article  Google Scholar 

  • Passera A, Compant S, Casati P, Maturo MG, Battelli G, Quaglino F et al (2019) Not just a pathogen? Description of a plant-beneficial Pseudomonas syringae strain. Front Microbiol 10:1409. https://doi.org/10.3389/fmicb.2019.01409

    Article  PubMed  PubMed Central  Google Scholar 

  • Patole SP, Shankara K, Pradhan RS, Dhore SB (2017) Isolation and characterization of toxin from Alternariahelianthi inciting blight in sunflower. Int J Curr Microbiol App Sci 6(10):2892–2896

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Planchamp C, Glauser G, Mauch-Mani B (2015) Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci 5:719

    Article  PubMed  PubMed Central  Google Scholar 

  • Proksa B (2010) Talaromycesflavus and its metabolites. Chem Pap 64:696–714

    Article  CAS  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339. s11104-009-9895-2. https://doi.org/10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Rutten G, Gómez-Aparicio L (2018) Plant-soil feedbacks and root responses of two Mediterranean oaks along a precipitation gradient. Plant Soil 424(1–2):221–231. https://doi.org/10.1007/s11104-018-3567-z

    Article  CAS  Google Scholar 

  • Sabaté DC, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC (2018) Biocontrol of Sclerotiniasclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiol Res 211:21–30

    Article  PubMed  Google Scholar 

  • Sayiprathap BR, Patibanda AK, Prasanna Kumari V, Jayalalitha K, Srinivasa Rao V, Sudini HK (2020) Multi-location evaluation of phytohormones and chemicals for the management of Pigeonpea Sterility Mosaic Disease (PSMD). Int J Curr Microbiol App Sci 9(7):3278–3284. https://doi.org/10.20546/ijcmas.2020.907.381

    Article  CAS  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30(3):177–184

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JE, Kent AD, Brisson VL, Gaudin AC (2019) Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216(4553):1376–1381. https://doi.org/10.1126/science.216.4553.1376

    Article  CAS  PubMed  Google Scholar 

  • Subedi SUBASH, Shrestha SM, Bahadur KG, Thapa RB, Ghimire SK, Neupane SARASWATI, Nessa BADRUN (2015) Botanical, chemical and biological management of Stemphyliumbotryosum blight disease of lentil in Nepal. Indian Phytopath 68(4):415–423

    Google Scholar 

  • Surekha CH, Neelapu NRR, Kamala G, Prasad BS, Ganesh PS (2013) Efficacy of Trichoderma viride to induce disease resistance and antioxidant responses in legume VignaMungo infested by Fusarium oxysporum and Alternaria alternata. Int J Agric Sci Res 3(2):285–294

    Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology, 2nd edn. Pearson, Upper Saddle River, NJ

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Eur J Soil Sci 57(1):67–71. https://doi.org/10.1111/j.1365-2389.2006.00771.x

    Article  CAS  Google Scholar 

  • Tiwari N, Ahmed S, Kumar S, Sarker A (2018) Fusarium wilt: a killer disease of lentil. Fusarium-Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers

    Google Scholar 

  • van de Mortel JE, de Vos RCH, Dekkers E, Pineda A, Guillod L, Bouwmeester K, van Loon JJA, Dicke M, Raaijmakers JM (2012) Plant Physiol 160(4):2173–2188. https://doi.org/10.1104/pp.112.207324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma RK, Sachan M, Vishwakarma K, Upadhyay N, Mishra RK, Tripathi DK et al (2018) Role of PGPR in sustainable agriculture: molecular approach toward disease suppression and growth promotion. In: Meena VS (ed) Role of rhizospheric microbes in soil, vol 2. Springer, Singapore, pp 259–290. https://doi.org/10.1007/978-981-13-0044-8_9

    Chapter  Google Scholar 

  • Yadav G, Vishwakarma K, Sharma S, Kumar V, Upadhyay N, Kumar N et al (2017) Emerging significance of rhizospheric probiotics and its impact on plant health: current perspective towards sustainable agriculture. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 233–251. https://doi.org/10.1007/978-981-10-3473-2_10

    Chapter  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Zemunik G, Turner BL, Lambers H, Laliberté E, Dyer A (2016) Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspot. J Ecol 104(3):792–805. https://doi.org/10.1111/1365-2745.12546

    Article  Google Scholar 

  • Zhang JX, Xue AG (2010) Biocontrol of sclerotinia stem rot (Sclerotiniasclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathol 59(2):382–391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, R.K. et al. (2022). Plant–Rhizospheric Microbe Interactions: Enhancing Plant Growth and Improving Soil Biota. In: Singh, U.B., Rai, J.P., Sharma, A.K. (eds) Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4101-6_22

Download citation

Publish with us

Policies and ethics