Skip to main content

Self-healing Fluidic Dielectric Elastomer Actuator

  • Conference paper
  • First Online:
Control, Instrumentation and Mechatronics: Theory and Practice

Abstract

Soft actuator with a large deflection range and a high degree of reliability is essential for microfluidic applications. This paper presents a self-healing fluidic dielectric elastomer actuator (SFDEA) fabricated using ecoflex 00–30. An SFDEA consist of an elastomeric shell filled with dielectric fluid and sandwiched between two compliant electrodes, which actuates when subject to a high voltage. A maximum deflection of 0.72 mm was reported during design simulation at 10 kV applied voltage, with an average of 0.7 mm deflection at higher voltages. Furthermore, at a low operating frequency of 0.5 Hz, the dynamic response deflection of each repeating actuation cycle has attained a high level of reliability. By measuring the effective deflection at each frequency cycle, the device’s performance has been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zainal, M.A., Sahlan, S., Mohamed Ali, M.S.: Micromachined shape-memory-alloy microactuators and their application in biomedical devices. Micromachines 6(7), 879–901 (2015)

    Article  Google Scholar 

  2. AbuZaiter, A., Mohamed Ali, M.S.: Analysis of thermomechanical behavior of shape-memory-alloy bimorph microactuator. In: 2014 5th International Conference on Intelligent Systems, Modelling and Simulation. Langkawi, Malaysia (2014)

    Google Scholar 

  3. AbuZaiter, A., et al.: Thermomechanical behavior of bulk NiTi shape-memory-alloy microactuators based on bimorph actuation. Microsyst. Technol. 22(8), 2125–2131 (2015). https://doi.org/10.1007/s00542-015-2641-1

    Article  Google Scholar 

  4. Liu, C., Qin, H., Mather, P.T.: Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007)

    Article  Google Scholar 

  5. Zainal, M.A., Ahmad, A., Mohamed Ali, M.S.: Frequency-controlled wireless shape memory polymer microactuator for drug delivery application. Biomed. Microdevice 19(1), 1–10 (2017). https://doi.org/10.1007/s10544-017-0148-5

    Article  Google Scholar 

  6. Kim, B.J., Meng, E.: Review of polymer MEMS micromachining. J. Micromech. Microeng. 26(1), 013001 (2015)

    Article  Google Scholar 

  7. Ceyssens, F., et al.: Actuators: accomplishments, opportunities and challenges. Sens. Actuat. A Phys. 295, 604–611 (2019)

    Article  Google Scholar 

  8. Park, B., et al.: Large displacement bi-directional out-of-plane Lorentz actuator array for surface manipulation. J. Micromech. Microeng. 27(8), 085005 (2017)

    Article  Google Scholar 

  9. Imai, S., Tsukioka, T.: A magnetic MEMS actuator using a permanent magnet and magnetic fluid enclosed in a cavity sandwiched by polymer diaphragms. Precis. Eng. 38(3), 548–554 (2014)

    Article  Google Scholar 

  10. Mohd Ghazali, F.A., et al.: MEMS actuators for biomedical applications: a review. J. Micromech. Microeng. 30(7), 073001 (2020)

    Article  Google Scholar 

  11. Lau, J.Y., Liang, W., Tan, K.K.: Enhanced robust impedance control of a constrained piezoelectric actuator-based surgical device. Sens. Actuat. A 290, 97–106 (2019)

    Article  Google Scholar 

  12. Minase, J., et al.: A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis. Eng. 34(4), 692–700 (2010)

    Article  Google Scholar 

  13. Srinivasa Rao, K., et al.: Design and optimization of MEMS based piezoelectric actuator for drug delivery systems. Microsyst. Technol. 26(5), 1671–1679 (2019)

    Article  Google Scholar 

  14. Munas, F.R., et al.: Development of PZT actuated valveless micropump. Sensors 18(5), 1302 (2018)

    Article  Google Scholar 

  15. Agarwal, G., et al.: Stretchable materials for robust soft actuators towards assistive wearable devices. Sci. Rep. 6(1), 1–8 (2016)

    Article  Google Scholar 

  16. Gorissen, B., et al.: Flexible pneumatic twisting actuators and their application to tilting micromirrors. Sens. Actuat. A 216, 426–431 (2014)

    Article  Google Scholar 

  17. Digumarti, K.M., Conn, A.T., Rossiter, J.: Euglenoid-inspired giant shape change for highly deformable soft robots. IEEE Robot. Autom. Lett. 2(4), 2302–2307 (2017)

    Article  Google Scholar 

  18. Ge, L., et al.: Fabrication of soft pneumatic network actuators with oblique chambers. JoVE (J. Vis. Exp.) 138, e58277 (2018)

    Google Scholar 

  19. Mohd Ghazali, F.A., et al.: Soft dielectric elastomer actuator micropump. Sens. Actuat. A 263, 276–284 (2017)

    Article  Google Scholar 

  20. Rosset, S., Shea, H.R.: Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110(2), 281–307 (2013)

    Article  Google Scholar 

  21. Zhang, Y., et al.: Electrical and mechanical self-healing in high-performance dielectric elastomer actuator materials. Adv. Func. Mater. 29(15), 1808431 (2019)

    Article  Google Scholar 

  22. de Saint-Aubin, C.A., et al.: High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes. Smart Mater. Struct. 27(7), 074002 (2018)

    Article  Google Scholar 

  23. Acome, E., et al.: Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359(6371), 61–65 (2018)

    Article  Google Scholar 

  24. Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23(6), 549–578 (2010). https://doi.org/10.1016/S0894-9166(11)60004-9

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Universiti Teknologi Malaysia through International and Industry Incentive Grant (Grant No. IIIG Q.J130000.3651.02M99).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sultan Mohamed Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad Fuaad, M.R., Ahmad Asri, M.I., Mohamed Ali, M.S. (2022). Self-healing Fluidic Dielectric Elastomer Actuator. In: Wahab, N.A., Mohamed, Z. (eds) Control, Instrumentation and Mechatronics: Theory and Practice. Lecture Notes in Electrical Engineering, vol 921. Springer, Singapore. https://doi.org/10.1007/978-981-19-3923-5_22

Download citation

Publish with us

Policies and ethics