Skip to main content

Metaheuristic-Based Machine Learning Approach for Customer Segmentation

  • Chapter
  • First Online:
Metaheuristics for Machine Learning

Abstract

In the globalized knowledge economy, the challenge of translating best available evidence from customer profiling and experience into policy and practice is universal. Customers are diverse in nature and require personalized services from financial institutions, whereas financial institutions need to predict their wants and needs to understand them on a deeper level. Customer segmentation is a very crucial process for a financial institution to profile new customers into specific segments and find patterns from existing customers. Usually, rule-based techniques focusing on specific customer characteristics, according to expert knowledge, are applied to segment them. However, these techniques highlight the fact that traditional classifications in the big data era are becoming increasingly irrelevant and agree to the claim of financial institutions not knowing their customers well enough. The main objective of this work is to propose an evolutionary clustering approach as a rule extractor mechanism that facilitates decision makers to recognize the most significant customer characteristics and profile them into segments. Particularly, a population-based metaheuristic algorithm (Genetic Algorithm) is used in a hybrid synthesis with unsupervised machine learning algorithms (K-means Algorithms) to solve data clustering problems. Based on the clustering result, labels are added for every data point in the dataset. This dataset is used to train supervised ML algorithms such as deep learning and random forests to predict in which cluster a new customer can be mapped. A cluster analysis conducted on behalf of the EXUS financial solutions company that provides financial institutions with financial software that can deliver debt collection services effectively, meeting both academic requirements and practical needs. Two real-world datasets collected from financial institutions in Greece, explored and analyzed for segmentation purposes. To demonstrate the effectiveness of the proposed method, well-known benchmark datasets from UCI machine learning repository were also used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monge, M., Quesada-López, Martínez, A., & Jenkins, M. (2021). Data mining and machine learning techniques for bank customers segmentation: A systematic mapping study. In: K. Arai, S. Kapoor, & R. Bhatia (Eds.), Intelligent systems and applications: Proceedings of the 2020 intelligent systems conference (IntelliSys) Volume 2 (pp. 666–684). Springer. https://doi.org/10.1007/978-3-030-55187-2_48

  2. Hong Kong Institute for Monetary and Financial Research (2020). Artificial intelligence in banking: The changing landscape in compliance and supervision. HKIMR Applied Research Report No. 2/2020.

    Google Scholar 

  3. Chawla, D., & Joshi, H. (2021). Segmenting mobile banking users based on the usage of mobile banking services. Global Business Review, 22(3), 68–704.

    Article  Google Scholar 

  4. Bijak, K., & Thomas, L. (2012). Does segmentation always improve model performance in credit scoring? Expert Systems with Applications, 39, 2433–2442.

    Article  Google Scholar 

  5. Thomas, L., Edelman, D., & Crook, J. (2002). Credit scoring and its applications. SIAM.

    Book  MATH  Google Scholar 

  6. Baesens, B., Rösch, D., & Scheule, H. (2016). Credit risk analytics: Measurement techniques, applications, and examples in SASⓇ. Wiley.

    Book  Google Scholar 

  7. Bequé, A., Coussement, K., Gayler, R., & Lessmann, S. (2017). Approaches for credit scorecard calibration: An empirical analysis. Knowledge-based Systems, 134, 213–227.

    Article  Google Scholar 

  8. Lappas, P. Z., & Yannacopoulos, A. N. (2021). Credit scoring: A constrained optimization framework with hybrid evolutionary feature selection. In: B. Christiansen, & T. Škrinjarić (Eds.), Handbook of research on applied AI for international business and marketing applications (pp. 580–605). IGI Global. https://doi.org/10.4018/978-1-7998-5077-9.ch028

  9. Hsieh, N.-C. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications, 27, 623–633.

    Article  Google Scholar 

  10. Bizhani, M., & Tarokh, M.-J. (2011). Behavioral rules of bank’s point-of-sale for segments description and scoring prediction. International Journal of Industrial Engineering Computations, 2, 337–350.

    Article  Google Scholar 

  11. Bahrami, M., Bozkaya, B., & Balcisoy, S. (2020). Using behavioral analytics to predict customer invoice payment. Big Data, 8(1), 25–37.

    Article  Google Scholar 

  12. Liao, S.-H., Chu, P.-H., & Hsiao, P.-Y. (2012). Data mining techniques and applications. Expert Systems with Applications, 39, 11303–11311.

    Article  Google Scholar 

  13. Mirza, S., Mittal, S., & Zaman, M. (2016). A review of data mining literature. International Journal of Computer Science and Information Security, 14(11), 437–442.

    Google Scholar 

  14. Aggarwal, C., & Reddy, C. (2014). Data clustering: Algorithms and applications. CRC Press.

    Book  MATH  Google Scholar 

  15. Bandyopadhyay, S., & Saha, S. (2013). Unsupervised classification: Similarity measures, classical and metaheuristic approaches, and applications. Springer.

    Book  MATH  Google Scholar 

  16. Bizhani, M., & Tarokh, M.-J. (2010). Behavioral segmentation of bank’s point-of-sales using RF*M* approach. Proceedings of the 2010 IEEE 6th International Conference on Intelligent Computer Communication and Processing (pp. 81–86). https://doi.org/10.1109/ICCP.2010.5606461

  17. Rezaeinia, S.-M., Keramati, A., & Albadvi, A. (2012). An integrated AHP-RFM method to banking customer segmentation. International Journal of Electronic Customer Relationship Management, 6(2), 153–168.

    Article  Google Scholar 

  18. Barman, D., & Chowdhury, N. (2019). A novel approach for the customer segmentation using clustering through self-organizing map. International Journal of Business Analytics, 6(2), 23–45.

    Article  Google Scholar 

  19. Bach, M.-P., Juković, S., Dumic̆ić, K., & S̆arlija, N. (2013). Business client segmentation in banking using self-organizing maps. South East European Journal of Economics and Business, 8(2), 32–41.

    Google Scholar 

  20. Seret, A., Bejinaru, A., & Baesens, B. (2015). Domain knowledge based segmentation of online banking customers. Intelligent Data Analysis, 19, S163–S184.

    Article  Google Scholar 

  21. Wang, G., Li, F., Zhang, P., Tian, Y., & Shi, Y. (2009). Data mining for customer segmentation in personal financial market. In: Y. Shi, S. Wang, J. Li, & Y. Zeng (Eds.), Cutting-edge research topics on multiple criteria decision making (pp. 614–621). Springer. https://doi.org/10.1007/978-3-642-02298-2_90

    Google Scholar 

  22. Sivasankar, E., & Vijaya, J. (2017). Customer segmentation by various clustering approaches and building an effective hybrid learning system on churn prediction dataset. In: H. Behera, & D. Mohapatra (Eds), Computational Intelligence in Data Mining (pp. 181–191). Springer. https://doi.org/10.1007/978-981-10-3874-7_18

    Google Scholar 

  23. Barman, D., Shaw, K.-K., Tudu, A., & Chowdhury, N. (2016). Classification of bank direct marketing data using subsets of training data. In: S. Satapathy, J. Mandal, S. Udgata, & V. Bhateja (Eds.), Information systems design and intelligent applications (pp. 143–151). Springer. https://doi.org/10.1007/978-81-322-2757-1_16

    Google Scholar 

  24. Rashinkar, P., & Krushnasamy, V. S. (2017). An overview of data fusion techniques. Proceedings of the 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore (pp. 694–697).

    Google Scholar 

  25. Meng, T., Jing, X., Yan, Z., & Pedrycz, W. (2020). A survey on machine learning for data fusion. Information Fusion, 57, 115–129.

    Article  Google Scholar 

  26. Oliveira, G., Coutinho, F., Campello, G., & Naldi, M. (2017). Improving k-means through distributed scalable metaheuristics. Neurocomputing, 24, 45–57.

    Article  Google Scholar 

  27. Jamel, A., & Akay, B. (2019). A survey and systematic categorization of parallel K-means and Fuzzy-c-Means algorithms. International Journal of Computer Systems Science and Engineering, 5, 259–281.

    Article  Google Scholar 

  28. Tsai, C.-W., Liu, S.-J., & Wang Y.-C. (2018). A parallel metaheuristic data clustering framework for cloud. Journal of Parallel and Distributed Computing, 116, 39–49.

    Article  Google Scholar 

  29. Hossain, M., Sebestyen, M., Mayank, D., Ardakanian, O., & Khazaei, H. (2020). Large-scale data-driven segmentation of banking customers. Proceedings of the 2020 IEEE International Conference on Big Data (pp. 4392–4401). https://doi.org/10.1109/BigData50022.2020.9378483

  30. Motevali, M., Shanghooshabad, A., Aram, R., & Keshavarz, H. (2019). WHO: A new evolutionary algorithm bio-inspired of wildebeests with a case study on bank customer segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 33(5), 1959017.

    Article  Google Scholar 

  31. Dhaenens, C., & Jourdan, L. (2016). Metaheuristics for Big Data. Wiley.

    Book  MATH  Google Scholar 

  32. Talbi, E.-G. (2009). Metaheuristics: From design to implementation. Wiley

    Book  MATH  Google Scholar 

  33. José-García, A., & Gómez-Flores, W. (2016). Automatic clustering using nature-inspired metaheuristics: A survey. Applied Soft Computing Journal, 41, 192–213.

    Article  Google Scholar 

  34. Ezugwu, A., Shukla, A., Agbaje, M., Oyelade, O., José-García, A., & Agushaka, J. (2020). Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature. Neural Computing and Applications, 33, 6247–6306. https://doi.org/10.1007/s00521-020-05395-4

    Article  Google Scholar 

  35. Ezugwu, A. (2020). Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study. SN Applied Sciences, 2, 273.

    Article  Google Scholar 

  36. Mehrmolaei, S., Keyvanpour, M., & Savargiv, M. (2020). Metaheuristics on time series clustering problem: Theoretical and empirical evaluation. Evolutionary Intelligence. https://doi.org/10.1007/s12065-020-00511-8

  37. Mohanty, P., Nayak, S., Mohapatra, U., & Mishra, D. (2019). A survey on partitional clustering using single-objective metaheuristic approach. International Journal of Innovative Computing and Applications, 10(3–4), 207–226.

    Google Scholar 

  38. Nanda, S., & Panda, G. (2014). A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary Computation, 16, 1–18.

    Article  Google Scholar 

  39. Nguyen, Q., & Rayward-Smith, V. J. (2011). CLAM: Clustering large applications using metaheuristics. Journal of Mathematical Modelling and Algorithms, 10(1), 57–78.

    Article  MathSciNet  Google Scholar 

  40. Gribel, D., & Vidal, T. (2019). HG-Means: A scalable hybrid genetic algorithm for minimum sum-of-squared clustering. Pattern Recognition, 88, 569–583.

    Article  Google Scholar 

  41. Naik, B., Mahaptra, S., Nayak, J., & Behera, H. (2017). Fuzzy clustering with improved swarm optimization and genetic algorithm: Hybrid approach. In: H. Behera, & D. Mohapatra (Eds.), Computational Intelligence in Data Mining (pp. 237–247). Springer. https://doi.org/10.1007/978-981-10-3874-7_23

    Google Scholar 

  42. Nayak, J., Nanda, M., Nayak, K., Naik, B., & Behera, H. (2014). An improved firefly fuzzy c-means (FAFCM) algorithm for clustering real world data sets. In: M. Kumar, D. Mohapatra, A. Konar, & A. Chakraborty (Eds.), Advanced Computing, Networking and Informatics (pp. 339–348). Springer. https://doi.org/10.1007/978-3-319-07353-8_40

    Google Scholar 

  43. Valdez, F., Castillo, O., & Melin, P. (2021). Bio-inspired algorithms and its applications for optimization in fuzzy clustering. Algorithms, 14(4), 122.

    Article  Google Scholar 

  44. Kuo, R., Zheng, Y., & Nguyen, T. P. Q. (2021). Metaheuristic-based possibilistic fuzzy k-modes algorithms for categorical data clustering. Information Sciences, 557, 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  45. Consoli, S., Korst, J., Pauws, S., & Geleijnse, G. (2020). Improved metaheuristics for the quartet method of hierarchical clustering. Journal of Global Optimization, 78, 241–270.

    Article  MathSciNet  MATH  Google Scholar 

  46. Pacheco, J. (2005). A scatter search approach for the minimum sum-of-squares clustering problem. Computers and Operations Research, 32, 1325–1335.

    Article  MATH  Google Scholar 

  47. Nayak, S., Rout, P., & Jagadev, A. (2019). Multi-objective clustering: a kernel based approach using differential evolution. Connection Science, 31(3), 294–321.

    Article  Google Scholar 

  48. Hu, K.-C., Tsai, C.-W., & Chiang, M.-C. (2020). A multiple-search multi-start framework for metaheuristics for clustering problems. IEEE Access, 8, 96173–96183.

    Article  Google Scholar 

  49. Belacel, N., Hansen, P., & Mladenović, N. (2002). Fuzzy J-Means: A new heuristic for fuzzy clustering. Pattern Recognition, 35, 2193–2200.

    Article  MATH  Google Scholar 

  50. Senthilnath, J., Kulkarni, S., Suresh, S., Yang, X., & Benediktsson, J. (2019). FPA clust: evaluation of the flower pollination algorithm for data clustering. Evolutionary Intelligence, 14, 1189–1199. https://doi.org/10.1007/s12065-019-00254-1

    Article  Google Scholar 

  51. Hansen, P., & Mladenović, N. (2001). J-Means: A new local search heuristic for minimum sum of squared clustering. Pattern Recognition, 34, 405–413.

    Article  MATH  Google Scholar 

  52. Kumar, V., Chhabra, J., & Kumar, D. (2017). Grey wolf algorithm-based clustering technique. Journal of Intelligent Systems, 26(1), 153–168.

    Article  MathSciNet  Google Scholar 

  53. Bonab, M., Hashim, S., Haurt, T., & Kheng, G. (2019). A new swarm-based simulated annealing hyper-heuristic algorithm for clustering problem. Procedia Computer Science, 163, 228–236.

    Article  Google Scholar 

  54. González-Almagro, G., Luengo, J., Cano, J.-R., & García, S. (2020). DILS: Constrained clustering through dual iterative local search. Computers and Operations Research, 121, 104979.

    Article  MathSciNet  MATH  Google Scholar 

  55. Liu, Y., Wang, L., & Chen, K. (2005). A tabu search based method for minimum sum of squares clustering. In: S. Singh, M. Singh, C. Apte, & P. Perner (Eds.), Pattern Recognition and Data Mining (pp. 248–256). Springer. https://doi.org/10.1007/11551188_27

    Google Scholar 

  56. Dowlatshahi, M. B., & Nezamabadi-pour, H. (2014). GGSA: A grouping gravitational search algorithm for data clustering. Engineering Applications of Artificial Intelligence, 36, 114–121.

    Article  Google Scholar 

  57. Gyamfi, K., Brusey, J., & Hunt, A. (2017). K-means clustering using tabu search with quantized means. arXiv:1703.08440v1 [cs.LG]

    Google Scholar 

  58. Boushaki, S., Kamel, N., & Bendjeghaba, O. (2018). A new quantum chaotic cuckoo search algorithm for data clustering. Expert Systems with Applications, 96, 358–372.

    Article  MATH  Google Scholar 

  59. Kuo, R., & Zulvia, F. (2020). Multi-objective cluster analysis using a gradient evolution algorithm. Soft Computing, 24, 11545–11559.

    Article  Google Scholar 

  60. Liu, Y., & Shen, Y. (2010). Data clustering with cat swarm optimization. Journal of Convergence Information Technology, 5(8), 21–28.

    Article  Google Scholar 

  61. Kamel, N., & Boucheta, R. (2014). A new clustering algorithm based on chameleon army strategy. In: S. Boonkrong, H. Unger, & P. Meesad (Eds.), Recent Advances in Information and Communication Technology (pp. 23–32). Springer. https://doi.org/10.1007/978-3-319-06538-0_3

    Google Scholar 

  62. Harifi, S., Khalilian, M., Mohammadzadeh, J., & Ebrahimnejad, S. (2020). New generation of metaheuristics by inspiration from ancient. Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (pp. 256–261). https://doi.org/10.1109/ICCKE50421.2020.9303653

  63. Kaur, A., & Kumar, Y. (2021). A new metaheuristic algorithm based on water wave optimization for data clustering. Evolutionary Intelligence. https://doi.org/10.1007/s12065-020-00562-x

  64. Irsalinda, N., Yanto, I., Chiroma, H., & Herawan, T. (2017). A framework of clustering based on chicken swarm optimization. In: T. Herawan, R. Ghazali, N. Nawi, & M. Deris (Eds.), Recent Advances on Soft Computing and Data Mining (pp. 336–343). Springer. https://doi.org/10.1007/978-3-319-51281-5_34

    Google Scholar 

  65. Komarasamy, G., & Wahi, A. (2012). An optimized K-means clustering technique using bat algorithm. European Journal of Scientific Research, 84(2), 263–273.

    Google Scholar 

  66. Alshamiri, A. K., Singh, A., & Surampudi, R. B. (2016). Artificial bee colony algorithm for clustering: An extreme learning approach. Soft Computing, 20, 3163–3176.

    Article  Google Scholar 

  67. Kumar, S., Datta, D., & Singh, S. (2015). Black hole algorithm and its applications. In: A. Azar, & S. Vaidyanathan (Eds.), Computational Intelligence Applications in Modeling and Contro (pp. 147–170). Springer. https://doi.org/10.1007/978-3-319-11017-2_7

    Google Scholar 

  68. Mageshkumar, C., Karthik, S., & Arunachalam, V. (2019). Hybrid metaheuristic algorithm for improving the efficiency of data clustering. Cluster Computing, 22, S435–S442.

    Article  Google Scholar 

  69. Silva-Filho, T., Pimentel, B., Souza, R., & Oliveira, A. (2015). Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization. Expert Systems with Applications, 42, 6315–6328.

    Article  Google Scholar 

  70. Sharma, M., & Chhabra, J. (2019). An efficient hybrid PSO polygamous crossover based clustering algorithm. Evolutionary Intelligence, 14, 1213–1231. https://doi.org/10.1007/s12065-019-00235-4

    Article  Google Scholar 

  71. Zheng, L., Chao, F., Parthaláin, N., Zhang, D., & Shen, Q. (2021). Feature grouping and selection: A graph-based approach. Information Sciences, 546, 1256–1272.

    Article  MathSciNet  MATH  Google Scholar 

  72. Niño-Adan, I., Manjarres, D., Landa-Torres, I., & Portillo, E. (2021). Feature weighting methods: A review. Expert Systems with Applications, 184, 115424.

    Article  Google Scholar 

  73. Wang, L., Wang, Y., & Chang, Q. (2016). Feature selection methods for big data bioinformatics: A survey from the search perspective. Methods, 111, 21–31.

    Article  Google Scholar 

  74. Moshki, M., Kabiri, P., & Mohebaljojeh, A. (2015). Scalable feature selection in high-dimensional data based on grasp. Applied Artificial Intelligence, 29, 283–296.

    Article  Google Scholar 

  75. Sarhani, M., & Vob, S. (2021). Chunking and cooperation in particle swarm optimization for feature selection. Annals of Mathematics and Artificial Intelligence. https://doi.org/10.1007/s10472-021-09752-4

  76. Ji, B., Lu, X., Sun, G., Zhang, W., Li, J., & Xiao, Y. (2020). Bio-inspired feature selection: An improved binary particle swarm optimization approach. IEEE Access, 8, 85989–86002. https://doi.org/10.1109/ACCESS.2020.2992752

    Article  Google Scholar 

  77. Lappas, P. Z., & Yannacopoulos, A. N. (2021). A machine learning approach combining expert knowledge with genetic algorithms in feature selection for credit risk assessment. Applied Soft Computing Journal, 107, 107391.

    Article  Google Scholar 

  78. Kumar, V., & Kumar, D. (2019). Automatic clustering and feature selection using gravitational search algorithm and its application to microarray data analysis. Neural Computing and Applications, 31, 3647–3663.

    Article  Google Scholar 

  79. Prakash, J., & Singh, P. (2019). Gravitational search algorithm and K-means for simultaneous feature selection and data clustering: A multi-objective approach. Soft Computing, 23, 2083–2100.

    Article  Google Scholar 

  80. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019). XAI – Explainable artificial intelligence. Science Robotics, 4(37), 1–2.

    Article  Google Scholar 

  81. Roselli, D., Matthews, J., & Talagala, N. (2019). Managing bias in AI. In L. Liu, & R. White (Eds.), WWW ‘19: Companion Proceedings of the 2019 World Wide Web Conference (pp. 539–544). San Francisco, USA.

    Chapter  Google Scholar 

  82. Gaikwad, M. R., Umbarkar, A. J., & Bamane, S. S. (2020). Large-scale data clustering using improved artificial bee colony algorithm. In: M. Tuba, S. Akashe, & A. Joshi (Eds.), ICT Systems and Sustainability (pp. 467–475). Springer. https://doi.org/10.1007/978-981-15-0936-0_50

    Google Scholar 

  83. Marinakis, Y., Marinaki, M., Matsatsinis, N., & Zopounidis, C. (2008). A memetic-grasp algorithm for clustering. Proceedings of the 10th International Conference on Enterprise Information Systems – AIDSS (pp. 36–43). https://doi.org/10.5220/0001694700360043

  84. Kowalski, P., Łukasik, S., Charytanowicz, M., & Kulczycki, P. (2019). Nature inspired clustering – Use cases of krill herd algorithm and flower pollination algorithm. In: L. Kóczy, J. Medina-Moreno, & E. Ramírez-Poussa (Eds), Interactions between Computational Intelligence and Mathematics (pp. 83–98). Springer. https://doi.org/10.1007/978-3-030-01632-6_6

    Google Scholar 

  85. Marinakis, Y., Marinaki, M., & Matsatsinis, N. (2007). A hybrid particle swarm optimization algorithm for clustering analysis. In: I. Y. Song, J. Eder, & T. M. Nguyen (Eds.), Data Warehousing and Knowledge Discovery (pp. 241–250). Springer. https://doi.org/10.1007/978-3-540-74553-2_22

    Google Scholar 

  86. Marinakis, Y., Marinaki, M., & Matsatsinis, N. (2008). A stochastic nature inspired metaheuristic for cluster analysis. International Journal of Business Intelligence and Data Mining, 3(1), 30–44.

    Article  Google Scholar 

  87. Marinakis, Y., Marinaki, M., Matsatsinis, N. (2008). A hybrid clustering algorithm based on multi-swarm constriction PSO and GRASP. In: I.-Y. Song, J. Eder, & T. M. Nguyen (Eds.), Data Warehousing and Knowledge Discovery (pp. 186–195). Springer.

    Google Scholar 

  88. Marinakis, Y., Marinaki, M., & Matsatsinis, N. (2009). A hybrid bumble bees mating optimization – GRASP algorithm for clustering. In: E. Corchado, X. Wu, E. Oja, Á. Herrero, & B. Baruque (Eds.), Hybrid Artificial Intelligence Systems (pp. 549–556). Springer.

    Google Scholar 

  89. Marinakis, Y., Marinaki, M., Doumpos, M., Matsatsinis, N., & Zopounidis, C. (2011). A hybrid ACO-GRASP algorithm for clustering analysis. Annals of Operations Research, 188(1), 343–358.

    Article  MathSciNet  MATH  Google Scholar 

  90. Saida, I., Nadjet, K., & Omar, B. (2014). A new algorithm for data clustering based in cuckoo search optimization. In: J. S. Pan, P. Krömer, & V. Snás̆el (Eds.), Genetic and Evolutionary Computing (pp. 55–64). Springer. https://doi.org/10.1007/978-3-319-01796-9_6

  91. Singh, T., Saxena, N., Khurana, M., Singh, D., & Abdalla, M. (2021). Data clustering using moth-flame optimization algorithm. Sensors, 21, 4086.

    Article  Google Scholar 

  92. Tian, Z., Fong, S., Wong, R., & Millham, R. (2016). Elephant search algorithm on data clustering. Proceedings of 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (pp. 787–793). https://doi.org/10.1109/FSKD.2016.7603276

  93. Cho, P. P. W., & Nyunt, T. T. S. (2020). Data clustering based on differential evolution with modified mutation strategy. Proceedings of the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 222–225). https://doi.org/10.1109/ECTI-CON49241.2020.9158243

  94. Kuo, R. J., Amornnikun, P., & Nguyen, T. P. Q. (2020). Metaheuristic-based possibilistic multivariate fuzzy weighted c-means algorithms for market segmentation. Applied Soft Computing Journal, 96, 106639.

    Article  Google Scholar 

  95. Eskandari, S., & Javidi, M. M. (2019). A novel hybrid bat algorithm with a fast clustering-based hybridization. Evolutionary Intelligence. https://doi.org/10.1007/s12065-019-00307-5

  96. Agbaje, M., Ezugwu, A., & Els, E. (2019). Automatic data clustering using hybrid firefly particle swarm optimization algorithm. IEEE Access, 7, 184963–184984. https://doi.org/10.1109/ACCESS.2019.2960925

    Article  Google Scholar 

  97. Wu, Z.-X., Huang, K.-W., Chen, J.-L., & Yang, C.-S. (2019). A memetic fuzzy whale optimization algorithm for data clustering. Proceedings of 2019 IEEE Congress on Evolutionary Computation (pp. 1446–1452). https://doi.org/10.1109/CEC.2019.8790044

  98. Hatamlou, A., & Hatamlou, M. (2013). PSOHS: An efficient two-stage approach for data clustering. Memetic Computing, 5, 155–161.

    Article  Google Scholar 

  99. Mitchell, M. (1998). An introduction to genetic algorithms. MIT Press.

    Book  MATH  Google Scholar 

  100. Kelleher, J. D. (2019). Deep learning. MIT Press.

    Book  Google Scholar 

  101. Pavlov, Y. (2000). Random forests. VSP.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank EXUS financial solutions company for its support with respect to the work described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Z. Lappas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lappas, P.Z., Xanthopoulos, S.Z., Yannacopoulos, A.N. (2023). Metaheuristic-Based Machine Learning Approach for Customer Segmentation. In: Eddaly, M., Jarboui, B., Siarry, P. (eds) Metaheuristics for Machine Learning. Computational Intelligence Methods and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-3888-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3888-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3887-0

  • Online ISBN: 978-981-19-3888-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics