Skip to main content

Recent Developments in Quantum Dots Technologies as Effective Theranostic Tools Against Cancer

  • Chapter
  • First Online:
Application of Quantum Dots in Biology and Medicine

Abstract

Cancer, being a condition of unhindered cell growth ultimately leading to the death of the patient, is very prominent in modern society. Despite all the colloquial therapies to stop or prevent or cure cancer, it’s not curable to a full extent. These colloquial therapies used in the treatment of cancer involve chemotherapy, radiation therapy, etc., leading to very prominent side effects and more often than not, the recurrence of the disease. Thus, the need for an alternative to the treatment of cancer is of utmost and urgent requirement; in lieu of this fact, the quantum dots, which are semiconductor nanocrystals in the range of 1–10 nm are employed as a complete theranostic tool for the same. Recent progress in the quantum dots technology allows us to both image and kill cancer cells with high target specificity and minimum or no side effects. Various organic, as well as inorganic quantum dots, are being employed to cure cancer as it is or in conjugation with various biomarkers like peptides, transferrin, folic acid, etc. to increase target specificity and minimize side effects. Though a lot of research review, have been written over the past few years in the last decade, in this review we will be focusing on certain types of cancers and the treatments generally employed and their drawbacks, and the development with the current status of the quantum dots technology in the treatment of cancer and its drawbacks like cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  Google Scholar 

  2. Sanz-Moreno V, Marshall CJ. The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr Opin Cell Biol. 2010;22(5):690–6.

    Article  CAS  Google Scholar 

  3. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: Integrating signals from front to back. Science. 2003;302(5651):1704–9.

    Article  CAS  Google Scholar 

  4. Lauffenburger DA, Horwitz AF. Cell migration: A physically integrated molecular process. Cell. 1996;84(3):359–69.

    Article  CAS  Google Scholar 

  5. Friedl P, Alexander S. Cancer invasion and the microenvironment: Plasticity and reciprocity. Cell. 2011;147(5):992–1009.

    Article  CAS  Google Scholar 

  6. Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 2010;22(5):697–706.

    Article  CAS  Google Scholar 

  7. Alexander S, Friedl P. Cancer invasion and resistance: Interconnected processes of disease progression and therapy failure. Trends Mol Med. 2012;18(1):13–26.

    Article  Google Scholar 

  8. Yao H, Zeng ZZ, Fay KS, Veine DM, Staszewski ED, Morgan M, et al. Role of α(5)β(1) integrin up-regulation in radiation-induced invasion by human pancreatic cancer cells. Transl Oncol. 2011;4(5):282–92.

    Article  Google Scholar 

  9. Nelson CM, Khauv D, Bissell MJ, Radisky DC. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells. J Cell Biochem. 2008;105(1):25–33.

    Article  CAS  Google Scholar 

  10. Xu R, Boudreau A, Bissell MJ. Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 2009;28(1–2):167–76.

    Article  Google Scholar 

  11. Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP, et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat Nanotechnol. 2018;13(9):812–8.

    Article  CAS  Google Scholar 

  12. Chung YJ, Kim K, Lee BI, Park CB. Carbon nanodot-sensitized modulation of Alzheimer’s β-amyloid self-assembly. Disassembly Toxicity. 2017;13(34):1700983.

    Google Scholar 

  13. Bentolila LA, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. J Nucl Med Official Publ Soc Nucl Med. 2009;50(4):493–6.

    CAS  Google Scholar 

  14. Hilderbrand SA, Weissleder R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr Opin Chem Biol. 2010;14(1):71–9.

    Article  CAS  Google Scholar 

  15. Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine. 2011;7(4):385–402.

    Article  CAS  Google Scholar 

  16. Tholouli E, Sweeney E, Barrow E, Clay V, Hoyland JA, Byers RJ. Quantum dots light up pathology. J Pathol. 2008;216(3):275–85.

    Article  CAS  Google Scholar 

  17. Byers RJ, Hitchman ER. Quantum dots brighten biological imaging. Prog Histochem Cytochem. 2011;45(4):201–37.

    Article  Google Scholar 

  18. True LD, Gao X. Quantum dots for molecular pathology: Their time has arrived. J Mol Diagn. 2007;9(1):7–11.

    Article  CAS  Google Scholar 

  19. He X, Gao J, Gambhir SS, Cheng Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: Status and challenges. Trends Mol Med. 2010;16(12):574–83.

    Article  Google Scholar 

  20. Fang M, Peng CW, Pang DW, Li Y. Quantum dots for cancer research: Current status, remaining issues, and future perspectives. Cancer Biol Med. 2012;9(3):151–63.

    CAS  Google Scholar 

  21. Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med. 2007;13(3):372–7.

    Article  CAS  Google Scholar 

  22. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–7.

    Article  CAS  Google Scholar 

  23. Li S, Skromne I, Peng Z, Dallman J, Al-Youbi AO, Bashammakh AS, et al. “Dark” carbon dots specifically “light-up” calcified zebrafish bones. J Mater Chem B. 2016;4(46):7398–405.

    Article  CAS  Google Scholar 

  24. Peng Z, Miyanji EH, Zhou Y, Pardo J, Hettiarachchi SD, Li S, et al. Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale. 2017;9(44):17533–43.

    Article  CAS  Google Scholar 

  25. Gao X, Du C, Zhuang Z, Chen W. Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C. 2016;4(29):6927–45.

    Article  CAS  Google Scholar 

  26. Margraf JT, Strauss V, Guldi DM, Clark T. The electronic structure of amorphous carbon nanodots. J Phys Chem B. 2015;119(24):7258–65.

    Article  CAS  Google Scholar 

  27. Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Controlled Release: Official J Controlled Release Soc. 2018;270:290–303.

    Article  CAS  Google Scholar 

  28. Li S, Amat D, Peng Z, Vanni S, Raskin S, De Angulo G, et al. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale. 2016;8(37):16662–9.

    Article  CAS  Google Scholar 

  29. Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286–98.

    Article  CAS  Google Scholar 

  30. Gorin SS, Heck JE, Cheng B, Smith SJ. Delays in breast cancer diagnosis and treatment by racial/ethnic group. Arch Intern Med. 2006;166(20):2244–52.

    Article  Google Scholar 

  31. Mustacchi G, De Laurentiis M. The role of taxanes in triple-negative breast cancer: literature review. Drug Des Devel Ther. 2015;9:4303–18.

    Article  CAS  Google Scholar 

  32. Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci. 2002;99(20):12617.

    Article  Google Scholar 

  33. Ruan J, Wang K, Song H, Xu X, Ji J, Cui D. Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles. Nanoscale Res Lett. 2011;6(1):299.

    Article  Google Scholar 

  34. Cai X, Luo Y, Zhang W, Du D, Lin Y. pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces. 2016;8(34):22442–50.

    Article  CAS  Google Scholar 

  35. Li S, Yang J, Lei X, Zhang J, Yang H, Li K, et al. Peptide-conjugated quantum dots act as the target marker for human pancreatic carcinoma cells. Cell Physiol Biochem. 2016;38(3):1121–8.

    Article  CAS  Google Scholar 

  36. Selvan ST, Patra PK, Ang CY, Ying JY. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem. 2007;119(14):2500–4.

    Article  Google Scholar 

  37. Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131(32):11308–9.

    Article  CAS  Google Scholar 

  38. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials. 2009;30(30):6041–7.

    Article  CAS  Google Scholar 

  39. Singh RP, Sharma G, Sonali, Singh S, Patne SCU, Pandey BL, et al. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater Sci Eng C. 2016;67:313–25.

    Google Scholar 

  40. Zhao X, Zhang J, Shi L, Xian M, Dong C, Shuang S. Folic acid-conjugated carbon dots as green fluorescent probes based on cellular targeting imaging for recognizing cancer cells. RSC Adv. 2017;7(67):42159–67.

    Article  CAS  Google Scholar 

  41. Mewada A, Pandey S, Thakur M, Jadhav D, Sharon M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J Mater Chem B. 2014;2(6):698–705.

    Article  CAS  Google Scholar 

  42. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–87.

    Article  CAS  Google Scholar 

  43. Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol. 2003;21(17):3357–65.

    Article  Google Scholar 

  44. Leong ASY, Zhuang Z. The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology. 2011;78(2):99–114.

    Article  CAS  Google Scholar 

  45. Decker T, Hungermann D, Böcker W. Prognostic and predictive factors of invasive breast cancer: Update 2009. Pathologe. 2009;30(1):49–55.

    Article  CAS  Google Scholar 

  46. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27(9):1485–91.

    Article  Google Scholar 

  47. Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. 2012;62(2):118–28.

    Article  Google Scholar 

  48. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  Google Scholar 

  49. Li D, Kang J, Golas BJ, Yeung VW, Madoff DC. Minimally invasive local therapies for liver cancer. Cancer Biol Med. 2014;11(4):217–36.

    Google Scholar 

  50. Goulart BH, Bensink ME, Mummy DG, Ramsey SD. Lung cancer screening with low-dose computed tomography: costs, national expenditures, and cost-effectiveness. J Nat Compr Cancer Netw JNCCN. 2012;10(2):267–75.

    Article  Google Scholar 

  51. Al BB, Tanios B-S, Emily C, Yi-Jen C, Michael AC, Harry SC, et al. Metastatic colon cancer, version 3.2013. J Nat Compr Cancer Netw. 2013;11(2):141–52.

    Google Scholar 

  52. Benson A, Abrams T, Ben-Josef E, Bloomston M, Clary B, Covey A, et al. Hepatobiliary cancers. J Nat Compr Cancer Netw JNCCN. 2009;7.

    Google Scholar 

  53. Brouquet A, Abdalla EK, Kopetz S, Garrett CR, Overman MJ, Eng C, et al. High survival rate after two-stage resection of advanced colorectal liver metastases: Response-based selection and complete resection define outcome. J Clin Oncol. 2011;29(8):1083–90.

    Article  Google Scholar 

  54. <Local Therapies for Hepatic Metastases.pdf>.

    Google Scholar 

  55. Hohenberger P, Gretschel S. Gastic cancer. The Lancet. 2003;362(9380):305–15.

    Article  Google Scholar 

  56. Parkin DM. International variation. Oncogene. 2004;23(38):6329–40.

    Article  CAS  Google Scholar 

  57. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global picture. Eur J Cancer (Oxford, England: 1990). 2001;37 Suppl 8:S4–66.

    Google Scholar 

  58. Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, et al. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 2011;1:240–50.

    Article  CAS  Google Scholar 

  59. Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32(36):9796–809.

    Article  CAS  Google Scholar 

  60. Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano. 2011;5(9):7000–9.

    Article  CAS  Google Scholar 

  61. Ma LL, Feldman MD, Tam JM, Paranjape AS, Cheruku KK, Larson TA, et al. Small multifunctional nanoclusters (Nanoroses) for targeted cellular imaging and therapy. ACS Nano. 2009;3(9):2686–96.

    Article  CAS  Google Scholar 

  62. He M, Huang P, Zhang C, Hu H, Bao C, Gao G, et al. Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Func Mater. 2011;21(23):4470–7.

    Article  CAS  Google Scholar 

  63. Lee EC, Yang JY, Lee KG, Oh SY, Suh YS, Kong SH, et al. The value of postoperative serum carcinoembryonic antigen and carbohydrate antigen 19–9 levels for the early detection of gastric cancer recurrence after curative resection. J Gastric Cancer. 2014;14(4):221–8.

    Article  CAS  Google Scholar 

  64. Asao T, Fukuda T, Yazawa S, Nagamachi Y. Carcinoembryonic antigen levels in peritoneal washings can predict peritoneal recurrence after curative resection of gastric cancer. Cancer. 1991;68(1):44–7.

    Article  CAS  Google Scholar 

  65. Marrelli D, Pinto E, De Stefano A, Farnetani M, Garosi L, Roviello F. Clinical utility of CEA, CA 19–9, and CA 72–4 in the follow-up of patients with respectable gastric cancer. Am J Surg. 2001;181(1):16–9.

    Article  CAS  Google Scholar 

  66. Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, et al. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron. 2015;74:134–41.

    Article  CAS  Google Scholar 

  67. Sudjaroen Y. Efficiency assessment of immunochromatographic strip test for the diagnosis of alpha-thalassemia-1 carriers. J Lab Physicians. 2015;7(1):4–10.

    Article  CAS  Google Scholar 

  68. Vyas SS, Jadhav SV, Majee SB, Shastri JS, Patravale VB. Development of immunochromatographic strip test using fluorescent, micellar silica nanosensors for rapid detection of B. abortus antibodies in milk samples. Biosens Bioelectron. 2015;70:254–60.

    Google Scholar 

  69. Yan X, Wang K, Lu W, Qin W, Cui D, He J. CdSe/ZnS quantum dot-labeled lateral flow strips for rapid and quantitative detection of gastric cancer carbohydrate antigen 72–4. Nanoscale Res Lett. 2016;11(1):138.

    Article  Google Scholar 

  70. Soltesz EG, Kim S, Kim SW, Laurence RG, De Grand AM, Parungo CP, et al. Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol. 2006;13(3):386–96.

    Article  Google Scholar 

  71. Parungo CP, Ohnishi S, Kim SW, Kim S, Laurence RG, Soltesz EG, et al. Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg. 2005;129(4):844–50.

    Article  Google Scholar 

  72. Ruan J, Song H, Qian Q, Li C, Wang K, Bao C, et al. HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials. 2012;33(29):7093–102.

    Article  CAS  Google Scholar 

  73. Kong Y, Chen J, Gao F, Li W, Xu X, Pandoli O, et al. A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy. Small. 2010;6(21):2367–73.

    Article  CAS  Google Scholar 

  74. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  75. Wong MCS, Lao XQ, Ho KF, Goggins WB, Tse SLA. Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep. 2017;7(1):14300.

    Article  Google Scholar 

  76. Bjerager M, Palshof T, Dahl R, Vedsted P, Olesen F. Delay in diagnosis of lung cancer in general practice. Br J Gen Pract. 2006;56(532):863–8.

    Google Scholar 

  77. Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, et al. Quantum dot based nano-biosensors for detection of circulating cell free mirnas in lung carcinogenesis: From biology to clinical translation. Front Genet. 2018;9:616.

    Article  CAS  Google Scholar 

  78. Reduced lung-cancer mortality with low-dose computed tomographic screening. New England J Med. 2011;365(5):395–409.

    Google Scholar 

  79. Wildstein KA, Faustini Y, Yip R, Henschke CI, Ostroff JS. Longitudinal predictors of adherence to annual follow-up in a lung cancer screening programme. J Med Screen. 2011;18(3):154–9.

    Article  Google Scholar 

  80. Brenner DJ. Radiation and chest CT scans: Are there problems? What should we do? Chest. 2012;142(3):549–50.

    Article  Google Scholar 

  81. McCunney RJ, Li J. Radiation risks in lung cancer screening programs. Chest. 2014;145(3):618–24.

    Article  Google Scholar 

  82. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;64:24–36.

    Article  Google Scholar 

  83. Schroeder KL, Goreham RV, Nann T. Graphene quantum dots for theranostics and bioimaging. Pharm Res. 2016;33(10):2337–57.

    Article  CAS  Google Scholar 

  84. Alessandro A, Giuseppa P, Andrea A, Vincenzo R, Sabina R, Caterina M. Nanoparticles in oncology: The new theragnostic molecules. Anticancer Agents Med Chem. 2011;11(7):669–86.

    Article  Google Scholar 

  85. Mariappan L, Shao Q, Jiang C, Yu K, Ashkenazi S, Bischof JC, et al. Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nanoparticles. Nanomedicine. 2016;12(3):689–99.

    Article  CAS  Google Scholar 

  86. FitzGerald PF, Butts MD, Roberts JC, Colborn RE, Torres AS, Lee BD, et al. A proposed computed tomography contrast agent using carboxybetaine Zwitterionic tantalum oxide nanoparticles: Imaging, biological, and physicochemical performance. Invest Radiol. 2016;51(12):786–96.

    Article  CAS  Google Scholar 

  87. Lu A-H, Zhang X-Q, Sun Q, Zhang Y, Song Q, Schüth F, et al. Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy. Nano Res. 2016;9(5):1460–9.

    Article  CAS  Google Scholar 

  88. Stone RC, Fellows BD, Qi B, Trebatoski D, Jenkins B, Raval Y, et al. Highly stable multi-anchored magnetic nanoparticles for optical imaging within biofilms. J Colloid Interface Sci. 2015;459:175–82.

    Article  CAS  Google Scholar 

  89. Zhou Q, Wei Y. for better or worse, iron overload by superparamagnetic iron oxide nanoparticles as a MRI contrast agent for chronic liver diseases. Chem Res Toxicol. 2017;30(1):73–80.

    Article  CAS  Google Scholar 

  90. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–44.

    Article  CAS  Google Scholar 

  91. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76.

    Article  CAS  Google Scholar 

  92. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.

    Article  CAS  Google Scholar 

  93. Li ZG, Yang K, Cao YA, Zheng G, Sun DP, Zhao C, et al. In vivo study of the effects of peptide-conjugated near-infrared fluorescent quantum dots on the tumorigenic and lymphatic metastatic capacities of squamous cell carcinoma cell line Tca8113 and U14. Int J Mol Sci. 2010;11(4):1413–22.

    Article  CAS  Google Scholar 

  94. Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee YK. Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials. 2010;31(20):5436–44.

    Article  CAS  Google Scholar 

  95. Huisman HJ, Fütterer JJ, van Lin ENJT, Welmers A, Scheenen TWJ, van Dalen JA, et al. Prostate cancer: Precision of integrating functional MR imaging with radiation therapy treatment by using fiducial gold markers. Radiology. 2005;236(1):311–7.

    Article  Google Scholar 

  96. Ackerson CJ, Sykes MT, Kornberg RD. Defined DNA/nanoparticle conjugates. Proc Natl Acad Sci U S A. 2005;102(38):13383–5.

    Article  Google Scholar 

  97. Huang X, El-Sayed IH, Qian W, El-Sayed MA. cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.

    Article  CAS  Google Scholar 

  98. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Can Res. 2003;63(9):1999–2004.

    CAS  Google Scholar 

  99. Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y. Multiphoton plasmon-resonance microscopy. Opt Express. 2003;11(12):1385–91.

    Article  Google Scholar 

  100. Troutman TS, Barton JK, Romanowski M. Optical coherence tomography with plasmon resonant nanorods of gold. Opt Lett. 2007;32(11):1438–40.

    Article  Google Scholar 

  101. Trowbridge IS, Omary MB. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc Natl Acad Sci U S A. 1981;78(5):3039–43.

    Article  CAS  Google Scholar 

  102. Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med. 2009;15(4):392–400.

    Article  CAS  Google Scholar 

  103. Ji S, Xu J, Zhang B, Yao W, Xu W, Wu W, et al. RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy. Cancer Biol Ther. 2012;13(4):206–15.

    Article  CAS  Google Scholar 

  104. Cai W, Chen X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc. 2008;3(1):89–96.

    Article  CAS  Google Scholar 

  105. Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol. 2011;6(8):485–90.

    Article  CAS  Google Scholar 

  106. Ma N, Sargent EH, Kelley SO. One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nat Nanotechnol. 2009;4(2):121–5.

    Article  CAS  Google Scholar 

  107. He X, Gao L, Ma N. One-step instant synthesis of protein-conjugated quantum dots at room temperature. Sci Rep. 2013;3:2825.

    Article  Google Scholar 

  108. Gillis P, Koenig SH. Transverse relaxation of solvent protons induced by magnetized spheres: Application to ferritin, erythrocytes, and magnetite. Magn Reson Med. 1987;5(4):323–45.

    Article  CAS  Google Scholar 

  109. Felsher DW. Cancer revoked: Oncogenes as therapeutic targets. Nat Rev Cancer. 2003;3(5):375–80.

    Article  CAS  Google Scholar 

  110. Triesscheijn M, Baas P, Schellens JH, Stewart FA. Photodynamic therapy in oncology. Oncologist. 2006;11(9):1034–44.

    Article  CAS  Google Scholar 

  111. Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod. 2010;36(2):322–8.

    Article  Google Scholar 

  112. Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl. 2008;47(38):7284–8.

    Article  CAS  Google Scholar 

  113. Singh SP. Multifunctional magnetic quantum dots for cancer theranostics. J Biomed Nanotechnol. 2011;7(1):95–7.

    Article  Google Scholar 

  114. Ye F, Barrefelt A, Asem H, Abedi-Valugerdi M, El-Serafi I, Saghafian M, et al. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials. 2014;35(12):3885–94.

    Article  CAS  Google Scholar 

  115. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med. 1995;18(2):321–36.

    Article  CAS  Google Scholar 

  116. Prakash AS, Rao KS, Dameron CT. Cadmium inhibits BPDE alkylation of DNA in the major groove but not in the minor groove. Biochem Biophys Res Commun. 1998;244(1):198–203.

    Article  CAS  Google Scholar 

  117. Hossain Z, Huq F. Studies on the interaction between Cd2+ ions and DNA. J Inorg Biochem. 2002;90:85–96.

    Article  CAS  Google Scholar 

  118. Beyersmann D, Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol. 1997;144(2):247–61.

    Article  CAS  Google Scholar 

  119. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4(1):11–8.

    Article  CAS  Google Scholar 

  120. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, et al. (CdSe)ZnS core−shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B. 1997;101(46):9463–75.

    Article  CAS  Google Scholar 

  121. Qu L, Peng ZA, Peng X. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001;1(6):333–7.

    Article  CAS  Google Scholar 

  122. Yong KT, Hu R, Roy I, Ding H, Vathy LA, Bergey EJ, et al. Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods. ACS Appl Mater Interfaces. 2009;1(3):710–9.

    Article  CAS  Google Scholar 

  123. Winter JO, Liu TY, Korgel BA, Schmidt CE. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv Mater. 2001;13(22):1673–7.

    Article  CAS  Google Scholar 

  124. Guisinger NP, Arnold MS. Beyond silicon: Carbon-based nanotechnology. MRS Bull. 2010;35(4):273–9.

    Article  Google Scholar 

  125. Demchenko AP, Dekaliuk MO. Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc. 2013;1(4): 042001.

    Article  CAS  Google Scholar 

  126. Baker SN, Baker GA. Luminescent carbon nanodots: Emergent nanolights. Angew Chem Int Ed Engl. 2010;49(38):6726–44.

    Article  CAS  Google Scholar 

  127. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7.

    Article  CAS  Google Scholar 

  128. Zheng L, Chi Y, Dong Y, Lin J, Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc. 2009;131(13):4564–5.

    Article  CAS  Google Scholar 

  129. Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun (Camb). 2011;47(3):932–4.

    Article  Google Scholar 

  130. Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem. 2007;119(34):6593–5.

    Article  Google Scholar 

  131. Wang F, Pang S, Wang L, Li Q, Kreiter M, Liu C. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem Mater. 2010;22(16):4528–30.

    Google Scholar 

  132. Wang X, Qu K, Xu B, Ren J, Qu X. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem. 2011;21(8).

    Google Scholar 

  133. El Essawy NA, Konsowa AH, Elnouby M, Farag HA. A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste. J Air Waste Manag Assoc. 2017;67(3):358–70.

    Article  Google Scholar 

  134. Ding C, Zhu A, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res. 2014;47(1):20–30.

    Article  CAS  Google Scholar 

  135. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015;8(2):355–81.

    Article  CAS  Google Scholar 

  136. Ma DL, Lin S, Wang W, Yang C, Leung CH. Luminescent chemosensors by using cyclometalated iridium(iii) complexes and their applications. Chem Sci. 2017;8(2):878–89.

    Article  CAS  Google Scholar 

  137. Liu J, Zhang P, Yang X, Wang K, Guo Q, Huang J, et al. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells. Nanotechnology. 2014;25(50): 505502.

    Article  Google Scholar 

  138. DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew Chem Int Ed Engl. 2014;53(30):7887–91.

    Article  CAS  Google Scholar 

  139. Wang N, Yu X, Zhang K, Mirkin CA, Li J. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J Am Chem Soc. 2017;139(36):12354–7.

    Article  CAS  Google Scholar 

  140. Jiang Y, Wang M, Hardie J, Tonga GY, Ray M, Xu Q, et al. Chemically engineered nanoparticle-protein interface for real-time cellular oxidative stress monitoring. Small. 2016;12(28):3775–9.

    Article  CAS  Google Scholar 

  141. Li H, Shao F-Q, Zou S-Y, Yang Q-J, Huang H, Feng J-J, et al. Microwave-assisted synthesis of N, P-doped carbon dots for fluorescent cell imaging. Microchim Acta. 2015;183(2):821–6.

    Article  Google Scholar 

  142. Cai QY, Li J, Ge J, Zhang L, Hu YL, Li ZH, et al. A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens Bioelectron. 2015;72:31–6.

    Article  CAS  Google Scholar 

  143. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Engl. 2013;52(30):7800–4.

    Article  CAS  Google Scholar 

  144. Tang F, Wang C, Wang X, Li L. Facile synthesis of biocompatible fluorescent nanoparticles for cellular imaging and targeted detection of cancer cells. ACS Appl Mater Interfaces. 2015;7(45):25077–83.

    Article  CAS  Google Scholar 

  145. Qiu J, Zhang R, Li J, Sang Y, Tang W, Rivera Gil P, et al. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. Int J Nanomedicine. 2015;10:6709–24.

    CAS  Google Scholar 

  146. Leamon CP, Low PS. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A. 1991;88(13):5572–6.

    Article  CAS  Google Scholar 

  147. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338(2):284–93.

    Article  CAS  Google Scholar 

  148. Song Y, Shi W, Chen W, Li X, Ma H. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem. 2012;22(25).

    Google Scholar 

  149. Elliott RL, Head JF. Cancer: Tumor iron metabolism, mitochondrial dysfunction and tumor immunosuppression; “A tight partnership—Was warburg correct?” J Cancer Ther. 2012;03(04):278–311.

    Article  Google Scholar 

  150. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: A useful target for cancer therapy. J Membr Biol. 2014;247(4):291–307.

    Article  CAS  Google Scholar 

  151. Fritzer M, Barabas K, Szüts V, Berczi A, Szekeres T, Faulk WP, et al. Cytotoxicity of a transferrin-adriamycin conjugate to anthracycline-resistant cells. Int J Cancer. 1992;52(4):619–23.

    Article  CAS  Google Scholar 

  152. Lubgan D, Jozwiak Z, Grabenbauer GG, Distel LV. Doxorubicin-transferrin conjugate selectively overcomes multidrug resistance in leukaemia cells. Cell Mol Biol Lett. 2009;14(1):113–27.

    Article  CAS  Google Scholar 

  153. Fritzer M, Szekeres T, Szüts V, Jarayam HN, Goldenberg H. Cytotoxic effects of a doxorubicin-transferrin conjugate in multidrug-resistant KB cells. Biochem Pharmacol. 1996;51(4):489–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the infrastructural facilities provided by NIT Rourkela.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, A., Sarkar, N. (2022). Recent Developments in Quantum Dots Technologies as Effective Theranostic Tools Against Cancer. In: Barik, P., Mondal, S. (eds) Application of Quantum Dots in Biology and Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-3144-4_6

Download citation

Publish with us

Policies and ethics