Skip to main content

Nanomaterials as Drug Carriers in Diagnosis and Treatment of Various Cancers

  • Chapter
  • First Online:
Nanomaterials for Energy Conversion, Biomedical and Environmental Applications

Abstract

Nanotechnology one of the emerging field in the twenty-first century, promotes its applications in diverged areas such as information technology sectors, energy, medicine, environmental science, food processing, etc. Nanoparticles synthesized from various methods have enormous applications such as diagnostic tools, imaging, drug delivery and tissue engineering in medical field. Cancer is a leading dangerous disease to human and about ten million people die every year, worldwide. Death rate of cancer can be reduced by early detection and proper treatment. Present-day treatment includes chemotherapy, radiotherapy, and combinatorial therapies mostly destroy the healthy cells along with cancerous cells. It’s very important to treat cancer cells alone without disturbing other cells. By implementing appropriate strategies for avoidance, early detection and appropriate therapeutics millions of lives could be saved. Nanotechnology plays a very important role in diagnosis and treating various diseases. Synthesized nanomaterials play a potential role in pharmaceutical sciences, to avoid the undesired effects of drugs. Nanomaterial-based delivery system in cancer possesses the proper delivery of drugs to the targeted site and achieves therapeutic efficacy. Currently, only a very few nano-based drugs are at hand for the treatment of this deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahamed M, Khan M, Siddiqui M et al (2011) Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Phys E Low Dimens Syst Nanostruct 43:1266–1271

    Article  CAS  Google Scholar 

  2. American Lung Association: trends in lung cancer morbidity and mortality, epidemiology and statistics unit: research and scientific affairs. http://www.lung.org/lung-disease/lung-cancer/learning-more-about-lung-cancer/understanding-lung-cancer/. Accessed 28 Feb 2013

  3. Armstrong DK (2002) Relapsed ovarian cancer: challenges and management strategies for a chronic disease. Oncologist 7:20–28

    Article  CAS  Google Scholar 

  4. Astefanei A, Nunez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21

    Article  CAS  Google Scholar 

  5. Bahreyni A, Mohamud Y, Luo H (2020) Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnol 18:180

    Google Scholar 

  6. Barati N, Razazan A, Nicastro J, Slavcev R, Arab A, Mosafa F, Nikpoor AR, Badiee A, Jaafari MR, Behravan J (2018) Immunogenicity and antitumor activity of the superlytic lambdaF7 phage nanoparticles displaying a HER2/neu-derived peptide AE37 in a tumor model of BALB/c mice. Cancer Lett 424:109–116

    Article  CAS  Google Scholar 

  7. Bhatt P, Vhora I, Patil S, Amrutiya J, Bhattacharya C, Misra A, Mashru R (2016) Role of antibodies in diagnosis and treatment of ovarian cancer: basic approach and clinical status. J Control Release 226:148–167

    Article  CAS  Google Scholar 

  8. Boulikas T (2004) Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep 12(1):3–12

    Google Scholar 

  9. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  Google Scholar 

  10. Brooks PC (1996) Cell adhesion molecules in angiogenesis. Cancer Metastasis Rev 15:187–194

    Article  CAS  Google Scholar 

  11. Cao Y, Wang HJ, Cao C et al (2011) Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth. J Nanoparticle Res 13:2759–2767

    Article  CAS  Google Scholar 

  12. Chavez-Hernandez NH, Salamanca-Garcıa M (2014) Epidemiolog´ıa del cancer de mama en hombres atendidos en el Centro´ Medico Nacional 20 de noviembre. Revista de Especialidades Medico Quirurgicas 19:267–71

    Google Scholar 

  13. Cheng N, Watkins-Schulz R, Junkins RD, David CN, Johnson BM, Montgomery SA, Peine KJ, Darr DB, Yuan H, McKinnon KP et al (2018) A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 3:e120638

    Article  Google Scholar 

  14. Cochrane Database of Systematic Reviews Non-small Cell Lung Cancer Collaborative Group: Chemotherapy can improve survival rates for nonsmall cell lung cancer. http://summaries.cochrane.org/CD002139/chemotherapy-can-improve-survival-rates-for-non-small-cell-lung-cancer (2010). Accessed 28 Feb 2013

  15. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. Journal of Drug Delivery, Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland, delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy. J Control Release 320:168–78

    Google Scholar 

  16. Cooper GM (2000) The cell: a molecular approach. 2nd edn. Sinauer Associates, The Development and Causes of Cancer, Sunderland (MA). https://www.ncbi.nlm.nih.gov/books/NBK9963/

  17. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    Article  Google Scholar 

  18. Deng H, Tan S, Gao X, Zou C, Xu C, Tu K, Song Q, Fan F, Huang W, Zhang Z (2020) Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharm Sin B 10:358–373

    Article  CAS  Google Scholar 

  19. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  Google Scholar 

  20. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science (New York, NY) 298:1759–1762

    Article  CAS  Google Scholar 

  21. Ealias AM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263:032019

    Google Scholar 

  22. European Commission (2016) Recommendation on the definition of a nanomaterial. http://data.europa.eu/eli/reco/2011/696/oj

  23. Fan G, Dundas CM, Zhang C, Lynd NA, Keitz BK (2018) Sequence-dependent peptide surface functionalization of metal–organic frameworks. ACS Appl Mater Interfaces 10:18601–18609

    Article  CAS  Google Scholar 

  24. Farideh FM (2017) Using nanoparticles in medicine for liver cancer imaging. Oman Med J 32:269–274

    Google Scholar 

  25. Farinati F, Sergio A, Baldan A et al (2009) Early and very early hepatocellular carcinoma: when and how much do staging and choice of treatment really matter? A multi-center study. BMC Cancer 9:33

    Article  Google Scholar 

  26. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Pineros,M et al (2020) Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer

    Google Scholar 

  27. Folkman J (1996) Fighting cancer by attacking its blood supply. Sci Am 275:150–154

    Article  CAS  Google Scholar 

  28. Fraguas AI, Torres-Suarez AI, Cohen MD, Bastida F, Yart D, Martin- L, Fernandez- CA (2020) PLGA nanoparticles for the Intraperitoneal administration of CBD in the treatment of ovarian cancer: in vitro and in Ovoassessment. Pharmaceutics 12:439

    Article  CAS  Google Scholar 

  29. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Google Scholar 

  30. Garcia-Aranda M, Redondo M (2019) Immunotherapy: a challenge of breast cancer treatment. Cancers 11:1822

    Article  CAS  Google Scholar 

  31. Ghosh D, Choudhury ST, Ghosh S et al (2012) Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem Biol Interact 195:206–214

    Article  CAS  Google Scholar 

  32. Girish PV, Mentham R, Rao CB, Nama S (2014) A review on breast cancer. Int J Pharm Bio Sci 4:47–54

    CAS  Google Scholar 

  33. Gmeiner WH, Ghosh S (2015) Nanotechnology for cancer treatment. Nanotechnol Rev 2:111–122

    Google Scholar 

  34. Goldberg MS (2019) Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 19:587–602

    Article  CAS  Google Scholar 

  35. Hawkins MJ, Soon- P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Del Rev 60:876–885

    Article  CAS  Google Scholar 

  36. Henschke CI, McCarthy P, Wernick S (2002) Lung cancer myths, facts, choices and hope. W.W. Norton and Company, New York

    Google Scholar 

  37. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  Google Scholar 

  38. Jimenez-Chavez AJ, Moreno- L, Bustos- I (2019) Therapy with multi-epitope virus-like particles of B19 parvovirus reduce tumor growth and lung metastasis in an aggressive breast cancer mouse model. Vaccine 37:7256–7268

    Article  CAS  Google Scholar 

  39. Jin J, Krishnamachary B, Barnett JD, Chatterjee S, Chang D, Mironchik Y, Wildes F, Jafee EM, Nimmagadda S, Bhujwalla ZM (2019) Human cancer cell membrane-coated biomimetic nanoparticles reduce fbroblastmediated invasion and metastasis and induce T-cells. ACS Appl Mater Interfaces 11:7850–7861

    Article  CAS  Google Scholar 

  40. Jung J, Park SJ, Chung HK et al (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84:e77–e83

    Google Scholar 

  41. Karmous I, Pandey A, Ben K, Haj KB, Chaoui A (2020) Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Bio Tra Ele Res 196:330–342

    Article  CAS  Google Scholar 

  42. Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioproc 2:47–58

    Article  Google Scholar 

  43. Kim TY, Kim DW, Chung JY et al (2004) Phase I and Pharmacokinetic study of Genexol-PM a cremophor—free, polymeric micelle formulated paclitaxel in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    Article  CAS  Google Scholar 

  44. Koudelka S, Turanek J (2012) Liposomal paclitaxel formula tions. J Control Release 163(3):322–334

    Article  CAS  Google Scholar 

  45. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles-based drug delivery systems. Colloids Surf B Biointerfaces 75:1–8

    Article  CAS  Google Scholar 

  46. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N et al (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng 1:569–578

    Google Scholar 

  47. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19:129–141

    Article  CAS  Google Scholar 

  48. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Soker S (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11:3530–3534

    Article  CAS  Google Scholar 

  49. National Cancer Institute: SEER Stat Fact Sheet: Lung and Bronchus. http://seer.cancer.gov/statfacts/html/lungb.html (2002–2008). Accessed 19 Dec 2012

  50. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric feld in atomically thin carbon flms. Science 306:666–669

    Article  CAS  Google Scholar 

  51. Parikh S, Hyman D (2007) Hepatocellular cancer: a guide for the internist. Am J Med 120:194–202

    Article  Google Scholar 

  52. Park S, Jiang Z, Mortenson ED et al (2010) The therapeutic effect of anti—HER/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18:160–170

    Article  CAS  Google Scholar 

  53. Parungo CP, Ohnishi S, De Grand AM, Laurence RG, Soltesz EG, Colson YL et al (2004) In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann Surg Oncol 11:1085–1092

    Article  Google Scholar 

  54. Popescu RC, Fufa MO, Grumezescu AM (2015) Metal-based nanosystems for diagnosis. Roman J Morphol Embryol = Revue roumaine de morphologie et embryologie 56:635–649

    Google Scholar 

  55. Ramalingam SS, Owonikoko TK, Khuri FR (2011) Lung cancer: new biological insights and recent American Lung Association therapeutic advances. CA Cancer J Clinic 61:91–112

    Article  Google Scholar 

  56. Ramesh A, Brouillard A, Kumar S, Nandi D, Kulkarni A (2020) Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Biomaterials 227:119559

    Article  CAS  Google Scholar 

  57. Richards DA, Maruani A, Chudasama V (2017) Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 8:63–77

    Article  CAS  Google Scholar 

  58. Rivera MP, Mehta AC, Wahidi MM (2013) Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer: American college of chest physicians evidence-based clinical practice guidelines. Chest J 143:e142S – e165

    Article  Google Scholar 

  59. Russell MR, Graham CD, Amato A, Gentry- A, Ryan A, Kalsi JK, Ainley C, Whetton AD, Menon U, Jacobs I et al (2017) A combined biomarker panel shows improved sensitivity for the early detection of ovarian cancer allowing the identification of the most aggressive type II tumours. Br J Cancer 117:666–674

    Article  CAS  Google Scholar 

  60. Saadat M, Manshadi MK, Mohammadi M, Zare MJ, Zarei M, Kamali R et al (2020) Magnetic particle targeting for diagnosis and therapy of lung cancers. J Control Release 328:776–791

    Google Scholar 

  61. Sanchez-Ramirez R, Domínguez-Ríos R, Juarez J, Valdés, M. Hassan N, Quintero-Ramos A, del Toro-Arreola A, Barbosa S, Taboada P, Topete A (2020) Iodegradable photoresponsive nanoparticles for chemo-, photothermal-and photodynamic therapy of ovarian cancer. Mater Sci Eng 111196

    Google Scholar 

  62. Siegel JM, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64: 9–29

    Google Scholar 

  63. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  Google Scholar 

  64. Singh R (2019) Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech 9:415

    Google Scholar 

  65. Staffhorst RW, Van der Born K, Erkelens CA, Hamelers IH, Peters GJ, Boven E, De Kroon AI (2008) Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts. AntiCancer Drugs 19:721–727

    Article  CAS  Google Scholar 

  66. Sutradhar KB, Amin ML (2014) Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology

    Google Scholar 

  67. Taghavi F, Saljooghi AS, Gholizadeh M, Ramezani M (2016) Deferasirox-coated iron oxide nanoparticles as a potential cytotoxic agent. Med Chem Comm 7:2290–2298

    Article  CAS  Google Scholar 

  68. Taton TA (2002) Nanostructures as tailored biological probes. Trends Biotechnol 20:277–279

    Google Scholar 

  69. Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T (2015) Biomarkers for the early diagnosis of hepatocellular carcinoma, World J. Gastroenterol WJG 21:10573

    Google Scholar 

  70. Villanueva A (2019) Hepatocellular carcinoma. N Engl J Med 380:1450–1462

    Article  CAS  Google Scholar 

  71. Whang YX, Zhao YY, Shen J, Sun X, Liu Y, Liu H, Wang Y, Wang J (2019) Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infltrating T cells and potentiates anti-PD-1 therapy. Nano Lett 19:2774–2783

    Article  Google Scholar 

  72. Witschi H (2001) A short history of lung cancer. Toxicol Sci 64:4–6

    Article  CAS  Google Scholar 

  73. Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem 13:900–904

    Article  CAS  Google Scholar 

  74. Yesilot S, Aydin C (2019) Silver nanoparticles; a new hope in cancer therapy? East J Med 24:111–116

    Article  Google Scholar 

  75. Zhou Q, Ching AK, Leung WK et al (2011) Novel therapeutic potential in targeting microtubules by nanoparticle albumin-bound paclitaxel in hepatocellular carcinoma. Int J Oncol 38:721–731

    CAS  Google Scholar 

  76. Zhao J, Li X, Wang X, Wan X (2019) Fabrication of hybrid nanostructures based on Fe3O4 nanoclusters as theranostic agents for magnetic resonance imaging and drug delivery. Nanoscale Res Lett 14:200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthaiyan Ahalliya Rathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathi, M.A., Girisan, E.K., Gopalakrishnan, V.K., Meenakshi, P., Guru Kumar, D. (2022). Nanomaterials as Drug Carriers in Diagnosis and Treatment of Various Cancers. In: Kasinathan, K., Elshikh, M.S., Al Farraj, D.AA. (eds) Nanomaterials for Energy Conversion, Biomedical and Environmental Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-2639-6_11

Download citation

Publish with us

Policies and ethics